DOI: 10.24937/2542-2324-2022-2-400-127-132 УДК 621.317.334.3

Г.Н. Цицикян, С.Н. Кунаев ФГУП «Крыловский государственный научный центр», Санкт-Петербург, Россия

СТРОГИЕ И ПРИБЛИЖЕННЫЕ ВЫРАЖЕНИЯ ДЛЯ КОЭФФИЦИЕНТОВ ВЗАИМНОЙ ИНДУКЦИИ И ЭЛЕКТРОДИНАМИЧЕСКИХ СИЛ СООСНЫХ ВИТКОВ И ПЛОСКИХ (ДИСКОВЫХ) КАТУШЕК С ТОКОМ

Объект и цель научной работы. Статья посвящена определению коэффициентов взаимной индукции соосных контуров в системе плоских катушек. Записаны известные модификации для взаимной индуктивности и электродинамических сил в системе соосных контуров, а также сопоставлены расчетные выражения для их вычисления.

Материалы и методы. Использованы методы математической физики и теоретической электротехники.

Основные результаты. Даны альтернативные выражения для коэффициентов взаимной индукции соосных катушек и электродинамических сил между ними при протекании токов. Построены кривые взаимной индуктивности для планарных катушек с расстоянием между плоскостями, равным 2 см, с расстоянием между витками в катушке *P*, равным 1 см, и с расстоянием между витками в катушке *N*, равным 0,5 см, 0,4 см и 0,3 см.

Заключение. Получены расчетные выражения для коэффициентов взаимной индукции и электродинамических сил при протекании токов в планарных соосных катушках, имеющие весьма важное значение для проблемы беспроводной передачи энергии.

Ключевые слова: соосные катушки, коэффициент взаимной индукции, электродинамические силы. *Авторы заявляют об отсутствии возможных конфликтов интересов.*

DOI: 10.24937/2542-2324-2022-2-400-127-132 UDC 621.317.334.3

G.N. Tsitsikyan^D, S.N. Kunaev^D Krylov State Research Centre, St. Petersburg, Russia

EXACT AND APPROXIMATE EXPRESSIONS FOR MUTUAL INDUCTANCE COEFFICIENTS AND ELECTRODYNAMIC FORCES OF CO-AXIAL TURNS AND PLANAR (DISK) COILS WITH CURRENT

Object and purpose of research. The paper is concerned with the mutual inductance coefficients of co-axial circuits in a planar coil system. Known modifications for mutual inductance and electrodynamic forces in a system of co-axial circuits are written, and relations for their calculation are compared.

Materials and methods. For this purpose the methods of mathematical physics and theoretic electric engineering are used.

Main results. Alternative expressions are given for mutual inductance coefficients of co-axial coils and electrodynamic forces between the live coils. Curves of mutual inductance are plotted for planar coils with the distance between planes equal to 2 cm and the distance between coil turns P equal to 1 cm and the distance between coil turns N equal to 0.5 cm, 0.4 cm & 0.3 cm.

Conclusion. Relations have been derived for calculation of mutual inductance coefficients and electrodynamic forces at current passage in planar co-axial coils, which are very important for wireless transfer of power.

Keywords: co-axial coils, mutual inductance coefficients, electrodynamic forces.

The authors declare no conflicts of interest.

Для цитирования: Цицикян Г.Н., Кунаев С.Н. Строгие и приближенные выражения для коэффициентов взаимной индукции и электродинамических сил соосных витков и плоских (дисковых) катушек с током. Труды Крыловского государственного научного центра. 2022; 2(400): 127–132.

For citations: Tsitsikyan G.N., Kunaev S.N. Exact and approximate expressions for mutual inductance coefficients and electrodynamic forces of co-axial turns and planar (disk) coils with current. Transactions of the Krylov State Research Centre. 2022; 2(400): 127–132 (in Russian).

В статье сопоставлены выражения для коэффициентов взаимоиндукции соосных контуров и возникающих электродинамических сил взаимодействия при протекании токов, с помощью которых закладываются основы расчета более сложных конфигураций систем катушек, характеризующихся симметрией вращения. Пример такой конфигурации дан в конце статьи. В качестве отправных положений и соответствующих сопоставлений приняты литературные источники [1–5].

Изложение начнем со строгой формулы для коэффициента взаимной индукции двух соосных витков (рис. 1) с радиусами R_1 и R_2 :

$$M = \mu_0 \sqrt{R_1 R_2} \left[\left(\frac{2}{k} - k \right) K - \frac{2}{k} E \right], \tag{1}$$

где *К* и *Е* – полные эллиптические интегралы первого и второго рода и

$$k^{2} = \frac{4R_{1}R_{2}}{(R_{1} + R_{2})^{2} + (a + z)^{2}}.$$
(2)

Ее видоизменение в [4] записано следующим образом:

$$M = \frac{2\mu_0 \sqrt{R_1 R_2}}{k} \left[\left(1 - \frac{k^2}{2} \right) K(k) - E(k) \right].$$
 (3)

В [2] записаны и другие строгие выражения для *M*, одно из которых представлено в виде:

$$M = \frac{2\mu_0 \sqrt{R_1 R_2}}{\sqrt{k_1}} (K_1 - E_1), \tag{4}$$

где K_1 и E_1 полные эллиптические интегралы первого и второго рода с модулем $k_1 = (1-k')/(1+k')$ и $(k')^2 = 1 - k^2$.

Рис. 1. Два соосных витка с радиусами *R*₁ и *R*₂ и с расстоянием *a* + *z* между плоскостями

Fig. 1. Two co-axial turns with radii R_1 and R_2 and the distance between planes a + z

Если заменить обозначения R_1 на a, R_2 на ρ , (a + z) на z и записать k^2 следующим образом:

$$k^2 = \frac{4a\rho}{\left(a+\rho\right)^2 + z^2},$$

то уравнение (1) можно представить в виде:

$$M = \mu_0 \sqrt{a\rho} \left[\left(\frac{2}{k} - k \right) K - \frac{2}{k} E \right] =$$
$$= \mu_0 \frac{\sqrt{a\rho}}{k} \left[(2 - k^2) K - 2E \right] =$$
$$= \frac{\mu_0 \sqrt{a\rho}}{k} \left[2(K - E) - k^2 K \right].$$

Тогда с подстановкой
$$k = 2 \frac{\sqrt{a\rho}}{\sqrt{(a+\rho)^2 + z^2}}$$

получим:

$$M = \frac{\mu_0}{2} \sqrt{(a+\rho)^2 + z^2} \left[2(K-E) - k^2 K \right],$$

а вводя обозначение $r_1^2 = (a + \rho)^2 + z^2$,

где r_1 подставляется в метрах, а также величину $\mu_0 = 4\pi \cdot 10^{-7} \, \Gamma$ н/м, будем иметь:

$$M (\Gamma_{\rm H}) = 2\pi \cdot 10^{-7} r_{\rm I} \Big[2(K-E) - k^2 K \Big].$$

Именно в таком виде дано выражение для коэффициента M двух соосных витков в работе M. Гарретта (M.W. Garrett. Calculation of Fields, Forces, and Mutual Inductances of current Systems by Elliptic Integrals // Journal of Applied Physics. 1963. Vol. 34, № 9. September. Р. 2567–2573) со ссылкой на первоисточник (J.C. Maxwell. Electricity and Magnetism. Oxford, England, 1873).

Еще одно выражение записано в [3, 6] в виде

$$M = \mu_0 \sqrt{R_1 R_2} Q_{1/2}(g), \tag{5}$$

где
$$g = 1 + \frac{(a+z)^2 + (R_2 - R_1)^2}{2R_1R_2}$$
. (6)

и $Q_{1/2}(g)$ является сферической функцией Лежандра второго рода [3] с полуцелым индексом, табличные значения которые имеются в [6].

Подчеркнем, что для случая двух контуров (рис. 1) коэффициент взаимной индукции можно с хорошей точностью рассчитать по формуле (П.3) из [3], представленной в соответствии с обозначениями рис. 1 в виде:

$$M = \frac{\pi\mu_0 R_1^2}{2R_2} \left| \begin{array}{c} \left(q^2 + 1\right)^{-\frac{3}{2}} + \frac{3}{8} \left(\frac{R_1}{R_2}\right)^2 \frac{1 - 4q^2}{(q^2 + 1)^{\frac{7}{2}}} + \\ + \frac{15}{64} \left(\frac{R_1}{R_2}\right)^4 \frac{8q^4 - 12q^2 + 1}{(q^2 + 1)^{\frac{11}{2}}} - \\ - \frac{35}{1024} \left(\frac{R_1}{R_2}\right)^6 \frac{64q^6 - 240q^4 + 120q^2 - 5}{(q^2 + 1)^{\frac{15}{2}}} \dots \right|, (7)$$

где $q = (a + z)/R_2$.

Заметим, что из выражения (7) можно получить выражение (5-22) из [2], когда $\delta = R_1/R_2$ достаточно мало и оба контура лежат в одной плоскости (рис. 2), а именно:

$$M = \frac{\pi}{2} \mu_0 \delta R_1 \begin{bmatrix} 1 + \frac{3}{8} \delta^2 + \frac{15}{64} \delta^4 + \frac{175}{1024} \delta^6 + \dots + \\ + \frac{(2n!)^2 (2n+1)}{2^{4n} (n!)^4 (n+1)} \delta^{2n} + \dots \end{bmatrix},$$
 (8)

 $n = 0, 1, 2, 3, \dots$

Из работы [7] для случая двух соосных контуров, расположенных в параллельных плоскостях с расстоянием h между ними, можно заимствовать выражение для взаимной индуктивности, но с исправлением допущенной опечатки (вместо (-2cos θ) должно стоять (2cos 2φ) в знаменателе под знаком корня) в следующем виде:

$$M = \frac{\mu_0 R_1 R_2}{2} \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \frac{2\cos 2\varphi d\varphi}{\sqrt{h^2 + R_1^2 + R_2^2 + 2R_1 R_2 \cos 2\varphi}}.$$
 (9)

При введении переменной $\phi_1 = 2\phi$ выражение (9) преобразуется к виду:

$$M = \frac{\mu_0 R_1 R_2}{2} \int_{\pi}^{\pi} \frac{\cos \varphi_1 d\varphi_1}{\sqrt{h^2 + R_1^2 + R_2^2 + 2R_1 R_2 \cos \varphi_1}}.$$
 (10)

Если теперь ϕ_1 заменить на $\pi - \phi'$, то будем иметь:

$$M = \frac{\mu_0 R_1 R_2}{2} \int_0^{2\pi} \frac{\cos \varphi' d\varphi'}{\sqrt{(h^2 + R_1^2 + R_2^2) \left[1 - \frac{2R_1 R_2}{h^2 + R_1^2 + R_2^2} \cos \varphi'\right]}} = \frac{\mu_0 R_1 R_2}{2(h^2 + R_1^2 + R_2^2)^{\frac{1}{2}}} \int_0^{2\pi} \frac{\cos \varphi' d\varphi'}{[1 - \gamma \cos \varphi']^{\frac{1}{2}}},$$
(11)

Рис. 2. Два контура с радиусами *R*₁ и *R*₂, лежащие в одной плоскости

Fig. 2. Two circuits with radii R_1 and R_2 within one plane

где
$$\gamma = \frac{2R_1R_2}{h^2 + R_1^2 + R_2^2}.$$
 (12)

Учитывая, что для $(1-x)^{-1/2}$ при $x^2 < 1$ можно воспользоваться рядом (9.03) из [8]:

$$(1-x)^{-1/2} = 1 + \frac{1}{2}x + \frac{1\cdot 3}{2\cdot 4}x^2 + \frac{1\cdot 3\cdot 5}{2\cdot 4\cdot 6}x^3 + \frac{1\cdot 3\cdot 5\cdot 7}{2\cdot 4\cdot 6\cdot 8}x^4 + \dots,$$

и полагая, что $x = \gamma \cos \phi'$, получим:

$$M = \frac{\mu_0 R_1 R_2}{2(h^2 + R_1^2 + R_2^2)^{1/2}} \frac{\pi}{2} \gamma \left(1 + \gamma^2 \frac{15}{32} + \gamma^4 \frac{315}{1024} + \dots \right), (13)$$

т.е. выражение для M, записанное в [5] с учетом обозначения для γ (12).

Перейдем к конкретным примерам. Пусть $R_1 = R_2 = R$, h = R. Тогда $\gamma = 2/3$, и для M по формуле (13) имеем:

$$M \cong \mu_0 \frac{R^2}{2(3R^2)^{1/2}} \frac{\pi}{3} \left(1 + \frac{4}{9} \cdot \frac{15}{32} + \frac{16}{81} \cdot \frac{315}{1024} \right) =$$
$$= \mu_0 R \frac{1,269\pi}{2 \cdot 3^{3/2}} = \mu_0 R \cdot 0,3836.$$

Соответственно, по формуле (7) (q = 1) получаем:

$$M \cong \mu_0 R \frac{\pi}{2} \left[2^{-3/2} + \frac{3}{8} \cdot \frac{(-3)}{2^{7/2}} + \frac{15}{64} \cdot \frac{(-3)}{2^{11/2}} \right] \cong$$
$$\cong \mu_0 R \frac{\pi}{2} [0,3535 - 0,0994 - 0,0155] = \mu_0 R \cdot 0,3747,$$

и результаты расчетов вполне сопоставимы. С уменьшением значения у наблюдается еще лучшее схождение. Переходя к определению электродинамических сил между круговыми соосными контурами при протекании токов i_1 и i_2 (рис. 1), сперва запишем выражение для силы взаимодействия f, данное в [3] в виде формулы (П.6):

$$f = \frac{\pi \mu_0 i_1 i_2}{2} \left(\frac{R_1}{R_2}\right)^2 \left(\frac{R_1}{R_2}\right)^2 \left(\frac{R_1}{R_2}\right)^2 \left(\frac{3 - 4q^2}{(q^2 + 1)^2} + \frac{105}{(q^2 + 1)^2}\right)^4 \left(\frac{-\frac{105}{64} \left(\frac{R_1}{R_2}\right)^4 q - \frac{-8q^4 + 20q^2 - 5}{(q^2 + 1)^2} - \frac{11}{(q^2 + 1)^2}\right)^4 - \frac{315}{1024} \left(\frac{R_1}{R_2}\right)^6 \times \frac{10}{(q^2 + 1)^2} \left(\frac{-\frac{315}{1024} \left(\frac{R_1}{R_2}\right)^6 \times \frac{10}{(q^2 + 1)^2} - \frac{11}{(q^2 + 1)^2}\right)^4 + \frac{10}{(q^2 + 1)^2} \left(\frac{10}{(q^2 + 1)^2}\right)^4 + \frac{10}{(q^2 + 1)^2} + \frac{$$

где, как и прежде, $q = (a + z)/R_2$.

Из (14) непосредственно вытекает, что при a + z = 0, т.е. для витков, расположенных как на рис. 2, сила f = 0. Вместе с тем при q = 1, $R_1 = R_2 = R$ и $i_1 = i_2 = i$ сила f может быть определена на основании (14), а именно:

$$\begin{split} f &= \frac{\pi \mu_0 i^2}{2} \begin{pmatrix} \frac{-3}{2^{5/2}} - \frac{15}{8} \cdot \frac{3-4}{2^{9/2}} + \frac{105}{64} \cdot \frac{-8+20-5}{2^{13/2}} - \\ -\frac{315}{1024} \cdot \frac{-64+336-280+35}{2^{17/2}} \end{pmatrix} = \\ &= \frac{\pi \mu_0 i^2}{2} (-0,53033+0,08286+0,12689-0,02294) = \\ &= -\pi \mu_0 i^2 0,17176. \end{split}$$

Рис. 3. Две соосные дисковые катушки с числом витков N и P с расстоянием h между плоскостями их расположения с токами i_1 и i_2 соответственно **Fig. 3.** Two co-axial disk coils with the number of turns N

and *P* and the distance *h* between planes of their location with currents i_1 and i_2 , respectively

Заметим также, что при q = 0 (a + z = 0) выражение (14) обращается в нуль. Знак минус означает, что на контуры с током действует сила притяжения. Теперь запишем строгое выражение для силы взаимодействия двух витков с токами i_1 и i_2 , которое представлено ниже следующим образом [9]:

$$f = \mu_0 i_1 i_2 \frac{h}{\left[h^2 + (R_1 + R_2)^2\right]^{1/2}} \left[K(k) - \frac{2 - k^2}{2(1 - k^2)}E(k)\right] =$$
$$= \mu_0 i_1 i_2 \frac{h}{\left[h^2 + (R_1 + R_2)^2\right]^{1/2}} \times \left[K(k) - E(k) - \frac{2R_1R_2}{h^2 + (R_1 - R_2)^2}E(k)\right], \quad (15)$$

где
$$k = \left[\frac{4R_1R_2}{h^2 + (R_1 + R_2)^2}\right]^{1/2}$$
, (16)

и вторая запись для силы f также может быть сведена к форме представления, имеющейся в уже упомянутой работе М. Гарретта.

Здесь h – расстояние между плоскостями расположения соосных контуров, R_1 и R_2 – радиусы контуров с токами i_1 и i_2 .

Преобразованная форма представления (15) с точностью до знака может быть записана в виде [4]:

$$f = \frac{\mu_0 i_1 i_2 h k}{4(R_1 R_2)^{1/2}} \left[\frac{2 - k^2}{1 - k^2} E(k) - 2K(k) \right].$$
(17)

Наконец, еще одна компактная формула для силы взаимодействия двух витков с токами i_1 и i_2 может быть записана в виде [3]:

$$f = \mu_0 i_1 i_2 \frac{h}{\sqrt{R_1 R_2}} \cdot \frac{Q_{1/2}^1(g)}{(g^2 - 1)^{1/2}},$$
(18)

The
$$g = 1 + \frac{(a+z)^2 + (R_1 - R_2)^2}{2R_1R_2}$$
, (19)

и $Q^{1}_{1/2}(g)$ – присоединенная функция Лежандра второго рода с полуцелым индексом.

Наибольший интерес в проблеме «wireless power application» [5, 10] связан с эффективностью передачи энергии с помощью планарных (плоских) катушек с воздушным промежутком порядка десятков мм (рис. 4). Развернутое выражение для взаимной индуктивности имеется в [5], но в приближении, по которому получена формула (13). Обращаясь к рис. 3, где показаны две соосные взаимодействующие катушки, можно получить следующие выражения для коэффициента взаимной индукции M и силы взаимодействия fпри протекании токов i_1 и i_2 :

$$M = \frac{\pi\mu_0}{2} \sum_{n=1}^{N} \sum_{p=1}^{P} \frac{R_{ln}^2}{R_{2p}} \left\{ \left[\left(\frac{h}{R_{2p}} \right)^2 + 1 \right]^{-\frac{3}{2}} + \frac{1}{2} + \frac{3}{8} \left(\frac{R_{ln}}{R_{2p}} \right)^2 \cdot \frac{1 - 4 \left(\frac{h}{R_{2p}} \right)^2}{\left(\left(\frac{h}{R_{2p}} \right)^2 + 1 \right)^{\frac{7}{2}}} + \frac{15}{64} \left(\frac{R_{ln}}{R_{2p}} \right)^4 \cdot \frac{8 \left(\frac{h}{R_{2p}} \right)^4 - 12 \left(\frac{h}{R_{2p}} \right)^2 + 1}{\left(\left(\frac{h}{R_{2p}} \right)^2 + 1 \right)^{\frac{11}{2}}} - \frac{35}{1024} \left(\frac{R_{ln}}{R_{2p}} \right)^6 \cdot \frac{64 \left(\frac{h}{R_{2p}} \right)^6 - 240 \left(\frac{h}{R_{2p}} \right)^4 + 120 \left(\frac{h}{R_{2p}} \right)^2 - 5}{\left(\left(\frac{h}{R_{2p}} \right)^2 + 1 \right)^{\frac{15}{2}}} \dots \right\}$$
(20)

и выражение для силы f:

Кривые для М построены на рис. 4.

Вывод

Conclusion

Даны альтернативные выражения для коэффициентов взаимной индукции соосных витков и электродинамических сил между ними при протекании токов с обобщением на случай соосных планарных (плоских) катушек. Представленные результаты

Рис. 4. Кривые взаимной индуктивности для планарных катушек с расстоянием между плоскостями, равным 2 см, с расстоянием между витками катушки *P*, равным 1 см, и с расстоянием между витками катушки *N*, равными: 1 – 0,5 см; 2 – 0,4 см; 3 – 0,3 см

Fig. 4. Curves of mutual inductance for planar coils with the distance between planes equal to 2 cm, the distance between coil turns *P* equal to 1 cm, and the distance between coil turns *N* equal to: 1 - 0.5 cm; 2 - 0.4 cm; 3 - 0.3 cm

могут быть использованы при разработке беспроводных систем передачи электроэнергии и для других практических приложений.

Список использованной литературы

- Grover F.W. Inductance Calculating: Working formulas and Tables. New York : Van Nostrand, 1946. XIV, 236 p.
- Калантаров П.А., Цейтлин Л.А. Расчет индуктивностей : справ. книга. 3-е изд., перераб. и доп. Ленинград : Энергоатомиздат, 1986. 487 с.
- Цицикян Г.Н. Взаимные индуктивности и силы взаимодействия соосных контуров, соленоидов и катушек // Известия АН СССР. Энергетика и транспорт. 1985. № 6. С. 90–99.
- New Formulas for mutual Inductance and Axial Magnetic Force Between a Thin Wall Solenoid and Thick circular Coil of rectangular Cross-Section / *S. Babic*, *F. Sirois, C. Akyel* [et al.] // IEEE Transaction on Magnetics. 2011. Vol. 47, № 8. P. 2034–2044. DOI: 10.1109/TMAG.2011.2125796.
- Modeling of mutual Coupling Between Planar Inductors in Wireless Power Application / S. Raju, R. Wu, M. Chan, C.P. Yue // IEEE Transactions on Power Electronics. 2014. Vol. 29, № 1. P. 481–490. DOI: 10.1109/TPEL.2013.2253334.
- Цицикян Г.Н., Бобровников П.В., Антипов М.Ю. Руководство по расчету индуктивностей и электродинамических сил в токоведущих частях электротехнических комплексов. Санкт-Петербург : Крыловский гос. науч. центр, 2020. 118 с.

- Цицикян Г.Н., Антипов М.Ю. Автономные электроэнергетические системы. Вопросы электробезопасности и электромагнитной совместимости. Санкт-Петербург : Крыловский гос. науч. центр, 2017. 106 с.
- Двайт Г.Б. Таблицы интегралов и другие математические формулы. Изд. 9-е, стер. Санкт-Петербург : Лань, 2005. 228 с.
- Цицикян Г.Н. О взаимной индуктивности и электродинамических силах взаимодействия коаксиальных контуров // Известия Рос. академии наук. Энергетика. 2018. № 4. С. 40–45. DOI: 10.31857/ S000233100002362-2.
- Lee S.-H., Lorenz R.D. Development and Validation of Model for 95%-Efficiency 220-W Wireless Power Transfer Over a 30-cm Air Gap // IEEE Transactions on Industry Applications. 2011. Vol. 47, № 6. P. 2495– 2504. DOI: 10.1109/TIA.2011.2168555.

References

- 1. *Grover F.W.* Inductance Calculating: Working formulas and Tables. New York : Van Nostrand, 1946. XIV, 236 p.
- Kalantarov P.A., Tseitlin L.A. Calculation of inductances: Reference book, 3rd edition, modified and supplemented. Leningrad : Energoatomizdat, 1986. 487 p. (*in Russian*).
- Tsitsikyan G.N. Mutual inductance and interaction forces of co-axial circuits, solenoids and coils // Izvestia AN SSSR. Energy and Transport. No. 6. P. 90–99 (*in Russian*).
- New Formulas for mutual Inductance and Axial Magnetic Force Between a Thin Wall Solenoid and Thick circular Coil of rectangular Cross-Section / *S. Babic*, *F. Sirois*, *C. Akyel* [et al.] // IEEE Transactions on Magnetics. 2011. Vol. 47, no. 8. P. 2034–2044. DOI: 10.1109/TMAG.2011.2125796.
- Modeling of mutual Coupling Between Planar Inductors in Wireless Power Application / S. Raju, R. Wu, M. Chan, C.P. Yue // IEEE Transactions on Power Electronics. 2014. Vol. 29, no. 1. P. 481–490. DOI: 10.1109/TPEL.2013.2253334.
- Tsitsikyan G.N., Bobrovnikov P.V., Antipov M.Yu. Manual on calculation of inductances and electrodynamic forces in live parts of electric engineering packages. St. Petersburg : Krylov State Research Centre, 2020. 118 p. (*in Russian*).

- Tsitsikyan G.N., Antipov M.Yu. Self-contained electric power systems. Electric safety and electromagnetic compatibility issues. St. Petersburg : Krylov State Research Centre. 2017. 106 p. (*in Russian*).
- Dvait G.B. Tables of integrals and other mathematical formulas. Izd. 9-e, ster. St. Petersburg : Lan, 2005. 228 p. (*in Russian*).
- Tsitsikyan G.N. On Mutual inductance and electromagnetic forces in interaction between co-axial circuits // Izvestia Ros. Akademii nauk. Energetika. 2018. No. 4. P. 40–45. DOI: 10.31857/S000233100002362-2 (*in Russian*).
- Lee S.-H., Lorenz R.D. Development and Validation of Model for 95%-Efficiency 220-W Wireless Power Transfer Over a 30-cm Air Gap // IEEE Transactions on Industry Applications. 2011. Vol. 47, no. 6. P. 2495– 2504. DOI: 10.1109/TIA.2011.2168555.

Сведения об авторах

Цицикян Георгий Николаевич, д.т.н., профессор, начальник сектора – заместитель начальника отдела филиала «ЦНИИ СЭТ» ФГУП «Крыловский государственный научный центр». Адрес: 196128, Россия, Санкт-Петербург, Благодатная ул., д. 6. Тел.: +7 (812) 748-52-39. E-mail: George.20021940@mail.ru. https://orcid.org/0000-0002-8813-6003.

Кунаев Семен Николаевич, инженер филиала «ЦНИИ СЭТ» ФГУП «Крыловский государственный научный центр». Адрес: 196128, Россия, Санкт-Петербург, Благодатная ул., д. 6. Тел.: +7 (999) 669-00-51. E-mail: semen-kunaev@mail.ru. https://orcid.org/0000-0003-1756-0760.

About the authors

Georgy N. Tsitsikyan, Dr. Sci. (Eng.), Prof., Head of Sector – Deputy Head of Department, TSNII SET branch of Krylov State Research Centre. Address: 6, Blagodatnaya st. St. Petersburg, Russia, post code 196128. Tel.: +7 (812) 748-52-39. E-mail: George.20021940@mail.ru. https://orcid.org/0000-0002-8813-6003.

Semyon N. Kunaev, Engineer, TSNII SET branch of Krylov State Research Centre. Address: 6, Blagodatnaya st. St. Petersburg, Russia, post code 196128. Tel.: +7 (999) 669-00-51. E-mail: semen-kunaev@mail.ru. https://orcid.org/0000-0003-1756-0760.

> Поступила / Received: 26.01.22 Принята в печать / Accepted: 04.05.22 © Цицикян Г.Н., Кунаев С.Н., 2022