DOI: 10.24937/2542-2324-2023-1-S-I-83-91 УДК 534.2 EDN: KIIALN

К.Н. Пялов^{1,2} ¹АО «ЦКБ МТ «Рубин»

²Санкт-Петербургский государственный морской университет, Санкт-Петербург, Россия

ДИССИПАЦИЯ ЭНЕРГИИ ЗВУКОВОЙ ВОЛНЫ В АКУСТИЧЕСКОМ ПОГРАНИЧНОМ СЛОЕ ГРАНИЦЫ «ЖИДКОСТЬ – ТВЕРДОЕ ТЕЛО»

Анализ проводится на примере границы раздела «вода – сталь». Протекание диссипативных процессов в акустическом пограничном слое (АПС) сопровождается поглощением энергии звуковой волны, величина которого пропорциональна коэффициенту поглощения D. Показано, что с ростом частоты волны значения D увеличиваются. Диссипация энергии в АПС заметно проявляется при углах падения волны $\theta \ge \theta_{fr}$, где θ_{fr} – угол полного внутреннего отражения. При $\theta \ge \theta_{fr}$ величина D растет по мере увеличения θ и достигает максимума D_m . Замена воды любой неорганической жидкостью приводит к возрастанию коэффициента поглощения D в 2...4 раза. Величина тепловыделения в АПС зависит от соотношения физических параметров твердого металлического тела и контактирующей с его поверхностью жидкости.

Ключевые слова: диссипация энергии, акустический пограничный слой, граница раздела сред, звуковая волна, коэффициент огражения, коэффициент поглощения, коэффициент прохождения.

Автор заявляет об отсутствии возможных конфликтов интересов.

DOI: 10.24937/2542-2324-2023-1-S-I-83-91 UDC 534.2 EDN: KIIALN

K.N. Pyalov JSC CDB ME, St. Petersburg, Russia

SOUND WAVE ENERGY DISSIPATION IN ACOUSTIC BOUNDARY LAYER AT «FLUID-SOLID» INTERFACE

Analysis is performed for the water-steel interface as an example case. Dissipative processes in the acoustic boundary layer (ABL) are accompanied by sound wave energy dissipation whose rate is proportional to absorption coefficient *D*. It is shown that *D* is increased with the wave frequency. Energy dissipation in ABL is clearly seen at wave incident angles $\theta \ge \theta_{fr}$, where θ_{fr} – angle of total internal reflection. At $\theta \ge \theta_{fr}$ the absorption coefficient *D* is growing with θ and reaches its maximum D_{m} . When water is replaced by any inorganic fluid, *D* coefficient is increased 2...4 times. Heat release in ABL depends on the relationships of physical metal body parameters and that of fluid in contact with the solid surface.

Keywords: energy dissipation, acoustic boundary layer, interface, sound wave, reflection coefficient, absorption coefficient, transmission coefficient.

The author declares no conflicts of interest.

Введение

Introduction

Исследования процессов поглощения звука для решения различных задач судовой акустики всегда

были и остаются актуальными. Целью работы является изучение влияния диссипации энергии в акустическом пограничном слое на параметры отраженной и преломленной волн, возникающих при взаимодействии плоской звуковой волны с плоской

Для цитирования: Пялов К.Н. Диссипация энергии звуковой волны в акустическом пограничном слое границы «жидкость – твердое тело». Труды Крыловского государственного научного центра. 2023; Специальный выпуск 1: 83–91. For citations: Pyalov K.N. Sound wave energy dissipation in acoustic boundary layer at «fluid-solid» interface. Transactions of the Krylov State Research Centre. 2023; Special Issue 1: 83–91 (in Russian).

границей раздела «жидкость – твердое тело». При этом предполагается, что звуковая волна распространяется в вязкой и теплопроводной жидкости и отражается от поверхности твердого теплопроводного тела, вещество которого имеет произвольные конечные значения теплофизических параметров.

Задачу о диссипации энергии звуковой волны на плоской границе радела жидких сред, имеющих произвольные наборы реальных акустических и теплофизических параметров, впервые рассмотрел Ф.Ф. Легуша. Результаты этих исследований представлены в статьях [1-3]. В них показано, что при взаимодействии звуковой волны с плоской бесконечной границей раздела жидких сред АПС образуются по обе стороны плоскости раздела сред. Формирование АПС не влияет на законы отражения и преломления звуковой волны при ее взаимодействии с поверхностью раздела жидкостей. Коэффициенты отражения звуковой волны по давлению R_p и прохождения волны через границу В становятся комплексными. Значения модулей коэффициентов R_p и В становятся зависящими от частоты. Появляется сдвиг фазы между падающей и отраженной, а также между падающей и преломленной волнами.

Одним из предельных случаев задачи, решение которой анализируется в статьях [1–3], является задача о взаимодействии звуковой волны, распространяющейся в жидкости, с плоской поверхностью твердого теплопроводного тела. При рассмотрении этого частного случая предполагалось, что механизм трансформации продольной звуковой волны в сдвиговые волны в веществе твердого тела отсутствует, а также в объеме твердого тела не возбуждаются вязкие волны. Следовательно, диссипация энергии волны в АПС поверхности твердого тела происходит в основном за счет затухания неоднородных вязких и тепловых волн в пристеночном слое жидкости и затухания тепловых волн в веществе твердого тела.

Анализ диссипативных процессов в АПС, проведенный в работе [4], показывает, что в диссипацию энергии в АПС могут вносить вклад другие типы неоднородных волн. Численная оценка вклада этих неоднородных волн в тепловой баланс АПС, возбужденных в химически чистых однородных веществах, показывает, что этот вклад невелик. На этом основании на данном этапе решения задачи им можно пренебречь. С дополнительными процессами в АПС и уникальными физическими свойствами вязких и тепловых волн можно ознакомиться в статье [4]. Итогом решения задачи являются выражения для расчетов частотных и угловых зависимостей модулей комплексных коэффициентов отражения R_p и прохождения B. Эти выражения были использованы для оценки параметров акустического поля, возникающего при взаимодействии бегущей звуковой волны с плоской поверхностью твердого тела в работах [5–7].

Постановка задачи. Классическое решение

Problem statement. Classical solution

В случае отсутствия потерь в средах рассматриваемая задача сводится к классической задаче взаимодействия плоской гармонической звуковой волны с плоской бесконечной границей раздела жидких полупространств. Особенности взаимодействия плоской звуковой волны с такой границей рассмотрены в линейной акустике [8]. Геометрия задачи представлена на рис. 1. Плоская гармоническая звуковая волна p_1 , распространяясь в отрицательном направлении оси z, падает под произвольным углом падения в на плоскую бесконечную границу жидких полупространств, которая совпадает с плоскостью x = 0. Все параметры первой среды, в которой распространяется звуковая волна, будем писать с нижним индексом «1», а параметры второй среды помечать нижним индексом «2». Гармонический множитель $exp(i\omega t)$ везде для краткости записей опускаем.

Верхнее и нижнее полупространства соответственно сверху и снизу не ограничены. В них нет звуковых волн, отраженных от внешних границ. Следовательно, в верхнем полупространстве акустическое поле представляет собой суперпозицию падающей p_1 и отраженной звуковой волны p_{12} , а в нижнем полупространстве существует только бегущая преломленная волна p_2 .

Если воспользоваться книгой [8], то результаты классического решения задачи можно написать сразу:

 коэффициент отражения звуковой волны по давлению

$$R_p = \frac{1 - X_{12}}{1 + X_{12}};\tag{1}$$

• коэффициент прохождения волны

$$B = \frac{2}{1 + X_{12}},\tag{2}$$

где $X_{12} = Z_1/Z_2$; $Z_1 = \rho_1 c_1/\cos\theta_1$; $Z_2 = \rho_2 c_2/\cos\theta_2 -$ акустические импедансы контактирующих сред;

 ρ – плотность; *с* – скорость звука в среде; θ_1 – угол падения; θ_2 – угол преломления волны.

На поверхности раздела «жидкость – металлическое твердое тело», как правило, наблюдается явление полного внутреннего отражения. Акустическая прозрачность границы наблюдается в диапазоне углов падения волны θ от 0 до $\theta_{fr} = \arcsin(c_1/c_2)$, где θ_{fr} – угол полного внутреннего отражения волны.

В соответствии с определением коэффициента поглощения звука, его величину можно рассчитать, если воспользоваться следующим выражением:

$$D = 1 - \left| R_p \right|^2.$$
 (3)

Из формулы (3) следует, что поглощение звука в рассматриваемом случае имеется, но оно связано с акустической прозрачностью границы раздела, а не с какими-либо диссипативными процессами.

Решение задачи с учетом поглощения звука в акустическом пограничном слое

Problem solution taking account of sound absorption in acoustic boundary layer

В случае, когда звуковая волна, распространяющаяся в вязкой и теплопроводной жидкости, отражается от плоской поверхности твердого теплопроводного тела, выражение для расчета комплексного коэффициента отражения волны по давлению принимает вид:

$$R_{p12} = \frac{1 - X_{12} - (1+i)M_{12}}{1 + X_{12} + (1+i)M_{12}}.$$
(4)

Здесь
$$M_{12} = \frac{b_{11}k_{T12} + b_{12}k_{v12}\sin^2\theta_1}{\cos\theta_1};$$

$$b_{11} = \sqrt{\frac{\omega a_1}{2c_1^2}} (\Gamma_1 - 1); \quad b_{12} = \sqrt{\frac{\omega v_1}{2c_1^2}};$$

$$k_{T12} = \frac{\left(1 + \frac{\rho_1 C_{P1} \beta_{v2}}{\rho_2 C_{P2} \beta_{v1}} \sqrt{\frac{a_2}{a_1}}\right) \left(1 + \frac{(\Gamma_2 - 1)\beta_{v1} c_1}{(\Gamma_1 - 1)\beta_{v2} c_2}\right)}{1 - \sqrt{\frac{\rho_1 C_{P1} \chi_1}{\rho_2 C_{P2} \chi_2}}};$$

 $k_{v12} = 1 + \frac{\rho_1}{\rho_2};$

 Γ – нелинейный параметр; a – коэффициент температуропроводности; χ – коэффициент теплопроводности; C_p – удельная теплоемкость вещества при

Рис. 1. Схема взаимодействия бегущей плоской звуковой волны с бесконечной плоской поверхностью твердого тела: 1 – жидкость; 2 – твердое металлическое тело

Fig. 1. Schematic interaction of a traveling plane sound wave with a flat infinite solid surface: 1 -fluid; 2 -metal solid body

постоянном давлении; v – коэффициент кинематической вязкости; η – коэффициент динамической вязкости; β_v – температурный коэффициент объемного расширения.

Коэффициент прохождения звуковой волны через границу раздела сред в этом случае принимает вид:

$$B_{12} = \frac{2}{1 + X_{12} + (1 + i)M_{12}}$$

Для расчета коэффициента поглощения звуковой волны, как и в классическом случае, можно использовать формулу (3).

Диапазон частот, в котором можно применять формулы (4) и (5), определяется из требования выполнения следующих неравенств:

$$\sqrt{\omega v_1 / 2c_1^2} \ll 1; \quad \sqrt{\omega a_1 / 2c_1^2} \ll 1.$$

Решая условия (6) относительно частоты, определяем значение верхней границы частотного диапазона f_{hb} . Так, для воды $f_{hb} = 7 \Gamma \Gamma \mu$, а для керосина $f_{hb} = 2 \Gamma \Gamma \mu$.

Численная оценка частотных зависимостей параметров отраженной и преломленной волн

Numerical estimation of frequency dependence for reflected and refracted waves

В качестве примера проведем анализ случая, когда звуковая волна распространяется в воде и отража-

ется от плоской поверхности твердого тела, имеющего физические параметры стали 30. Верхнее полупространство заполнено водой, имеющей статическую температуру $T_0 = 291$ К (18 °C) и статическое давление $P_0 = 1,0$ атм.

Для расчета частотных и угловых зависимостей модуля коэффициента отражения звукового давления R_{p12} использовалось выражение (4). Расчетный комплекс M_{12} учитывает диссипацию энергии в АПС. Прежде всего, рассмотрим результаты расчетов частотной зависимости модуля R_{p12} при нормальном падении звуковой волны на поверхность раздела сред (рис. 1; $\theta_1 = 0$). Отметим, что при $\theta_1 = 0$ форма записи расчетного комплекса M_{12} , входящего в выражение (4), упрощается и принимает вид $M_{12} = b_{11}k_{T12}$.

Результаты расчета частотной зависимости модуля R_{p12} показаны на рис. 2. Здесь же представлено классическое значение коэффициента отражения звука от поверхности стали $R_{p0} = 0,927$. Нетрудно заметить, что возбуждение АПС вблизи поверхности твердого тела приводит к уменьшению величины модуля R_{p12} с ростом частоты. Это является следствием увеличения диссипации энергии в АПС при увеличении частоты звуковой волны. На всех частотах выполняется неравенство $R_{p0} > |R_{p12}|$.

На рис. З представлены расчеты частотной зависимости модуля коэффициента прохождения звуковой волны по давлению B_{12} при $\theta = 0$. Для расчета этой зависимости использовалось выражение (5). Нетрудно заметить, что полное значение модуля коэффициента прохождения звука уменьшается с ростом частоты. При этом на всех частотах $|B_{12}| < B_0 = 1,927$.

Частотная зависимость полного коэффициента поглощения D для случая $\theta_1 = 0$ показана на рис. 4. В результате возбуждения АПС вблизи отражающей поверхности тела появляется дополнительное поглощение звука $D - D_0$. Здесь классическое поглощение звука характеризуется коэффициентом $D_0 = 0,140$. Величина разности $D - D_0$ растет пропорционально \sqrt{f} , где f – частота падающей звуковой волны.

Из графика, представленного на рис. 4, нетрудно заметить, что при $\theta_1 = 0$ поглощение звука, обусловленное диссипацией энергии в АПС, невелико. Это связано с тем обстоятельством, что в рассматриваемом случае функция M_{12} , входящая в формулу (4), имеет минимальное значение. В АПС возбуждаются только неоднородные тепловые волны. По этой причине возбуждение АПС мало влияет на величину коэффициентов отражения (рис. 2) и поглощения (рис. 4)

В результате поглощения звука в АПС коэффициенты R_{p12} и B_{12} становятся комплексными функциями. В результате чего появляются фазовые сдвиги между падающей и отраженной волнами β_R , а также между падающей и прошедшей волнами β_B . Частотные зависимости фазовых сдвигов β_R и β_B для угла падения $\theta_1 = 0$ показаны на рис. 5. Значения фазовых сдвигов β_R и β_B ищем как аргументы комплексных функций R_{p12} и B_{12} .

Из хода кривых, показанных на рис. 5, видно, что наличие потерь на границе раздела сред приводит к небольшому отставанию по фазе от падающей

Рис. 2. Частотная зависимость коэффициента отражения звуковой волны: $\theta_1 = 0$; $R_{\rho 0} = 0,927$ Fig. 2. Sound wave absorption coefficient versus frequency: $\theta_1 = 0$; $R_{\rho 0} = 0,927$

Рис. 3. Частотная зависимость коэффициента прохождения звуковой волны: $\theta_1 = 0$; $B_0 = 1,927$ Fig. 3. Sound wave transmission coefficient versus frequency: $\theta_1 = 0$; $B_0 = 1,927$

Рис. 4. Частотная зависимость коэффициента поглощения звуковой волны: $\theta_1 = 0$; $D_0 = 0,140$ **Fig.** 4. Sound wave absorption coefficient versus frequency: $\theta_1 = 0$; $D_0 = 0,140$

волны как отраженной, так и прошедшей звуковых волн. Малые разности фаз соответствуют малому поглощению звука в АПС границы при $\theta = 0$. Напомним, что в классическом случае, когда потери в системе отсутствуют, значения $\beta_R = 0$ и $\beta_B = 0$.

Из результатов расчетов, представленных на рис. 2–5, можно сделать вывод о том, что при нормальном падении звуковой волны на границу раздела сред формирование АПС практически не влияет на величину коэффициентов R_p и *B*. В этом случае при проведении расчетов нужно использовать формулы (1) и (2).

Численная оценка угловых зависимостей параметров отраженной и преломленной волн

Numerical estimation of angular dependence for reflected and refracted waves

Параметры акустического поля, возникающего при взаимодействии плоской звуковой волны с границей раздела сред, зависят от угла падения волны θ . При углах падения волны $\theta > 0$ в диссипативном процессе принимают участие не только тепловые, но и вязкие волны. При этом вклад вязких волн в диссипацию энергии в АПС по мере увеличения θ растет пропорционально sin θ

Рис. 5. Частотные зависимости фазовых сдвигов при $\theta_1 = 0$: $1 - \beta_R - разность фаз между падающей и отраженной волнами; <math>2 - \beta_B - разность фаз между падающей и прошедшей волнами$

Fig. 5. Frequency dependence of phase shifts at $\theta_1 = 0$: $1 - \beta_R - phase difference between incident and reflected waves;$ $<math>2 - \beta_B - phase difference between incident and passed waves$

(см. выражение (4)). На поверхности раздела «вода – сталь» наблюдается явление полного внутреннего отражения. В нашем случае полное внутреннее отражение волны наблюдается при углах падения $\theta \ge \theta_{fr} = 0,301$. Результаты расчета угловых зависимостей модуля коэффициента отражения звуковой волны R_p показаны на рис. 6. Расчеты сделаны на частотах $f_1 = 1$ кГц и $f_2 = 10$ кГц.

Из рис. 6 нетрудно заметить, что акустическая прозрачность границы раздела наблюдается в диапазоне углов падения звуковой волны от 0 до $\theta_{fr} = 0$ (кривая 1). В этом диапазоне углов падения величина модуля коэффициента отражения R_{p12} в основном определяется акустическими параметрами контактирующих сред. При углах $\theta \ge \theta_{fr}$ классический коэффициент отражения $R_p = 1$. Наличие диссипации энергии в АПС влияет на величину модуля коэффициента R_{p12} . В диапазоне углов падения от 0 до θ_{fr} это влияние незначительно (см. кривую 2). При $\theta = \dot{\theta}_{fr}$ значение модуля $R_{p12} \neq 0$. Увеличение угла падения приводит к уменьшению модуля коэффициента отражения. Обращает на себя внимание наличие характерного минимума при угле падения, близком к $\theta = 0.5\pi$ (угол скольжения $\phi = 0$).

Сравнение результатов расчетов коэффициентов прохождения представлено на рис. 7. Расчеты проделаны на частоте f = 10,0 кГц. Из рисунка видно, что в классическом случае (кривая I) на акустически прозрачном участке поглощение звука в АПС мало

Рис. 6. Зависимость коэффициента отражения по давлению от угла падения: $1 - классический расчет; <math>2 - расчет с учетом диссипации энергии в акустическом пограничном слое на частоте <math>f = 1,0 \ \kappa \Gamma \mu; \ 3 - расчет с учетом диссипации энергии в акустическом пограничном слое на частоте <math>f = 10,0 \ \kappa \Gamma \mu$

Fig. 6. Sound pressure reflection coefficient versus incident angle: 1 - classical estimation; 2 - estimation taking into account energy dissipation in acoustic boundary layer at f = 1,0 kHz; 3 - estimation taking into account energy dissipation in acoustic boundary layer f = 10,0 kHz

влияет на значение модуля коэффициента B_{12} . При $\theta = \theta_{fr}$ величина модуля $B_{12} = 2$. При углах $\theta \ge \theta_{fr}$ величина модуля B_{12} уменьшается, и при $\theta \to 0,5\pi$ значение $B_{12} \to 0$. Наличие АПС приводит к тому, что при $\theta = \theta_{fr}$ значения $|B_{12}| < 2$. При углах $\theta \ge \theta_{fr}$ кривая $B_{12}(\theta)$ становится более крутой и выполняется неравенство $|B_{12}| < B$. При $\theta \to 0,5\pi$ значение $B_{12} \to 0$.

Результаты численной оценки коэффициентов поглощения звука D в зависимости от угла падения волны показаны на рис. 8. Для проведения расчетов коэффициента D использовалась формула (3): классический случай (кривая I); расчет с учетом формирования АПС (кривая 2). Расчеты проведены на частотах $f_1 = 1$ кГц и $f_2 = 10$ кГц.

Анализ хода кривых, представленных на рис. 8, позволил установить следующее. В диапазоне углов падения от 0 до θ_{fr} , где наблюдается акустическая прозрачность границы, величина $D - D_0$ пропорциональна плотности теплового потока, возникающего за счет диссипации в АПС на поверхности. Коэффициент поглощения D_0 пропорционален акустической энергии, переносимой преломленной бегущей звуковой волной. При $\theta \ge \theta_{fr}$ коэффициент поглощения $D_0 = 0$ и, как следствие этого, полное поглощение энергии полностью определяется диссипацией энергии в АПС ($D \ne 0$).

Рис. 7. Зависимость коэффициента прохождения по давлению от угла падения на частоте 10,0 кГц: 1 – классический расчет; 2 – расчет с учетом диссипации энергии в акустическом пограничном слое

Fig. 7. Sound pressure transmission coefficient versus incident angle at 10,0 kHz: *1* – classical estimation; *2* – estimation taking into account energy dissipation in acoustic boundary layer

Как видно из рис. 8, при $\theta > \theta_{fr}$, значение коэффициента D монотонно увеличивается и при угле падения θ_m наблюдается максимум коэффициента поглощения D_m . При $\theta \ge \theta_m$ значения D резко уменьшаются и при $\theta = 0,5\pi$ коэффициент D = 0. Полученный результат входит в противоречие, например, с экспериментальным фактом формирования АПС при скольжении звуковой волны вдоль поверхности твердого теплопроводного тела. Таким образом, в реальных случаях при $\theta = 0,5\pi$ величина $D \ne 0$.

Область углов падения от $\theta = 1,3$ до $\theta = 0,5\pi$ рассмотрим более подробно. Для этого на рис. 9 показаны результаты расчетов функции $D(\theta)$ в этом диапазоне углов падения для двух частот: $f_1 = 1,0$ кГц (кривая 1) и $f_2 = 10,0$ кГц (кривая 2). С этих кривых нетрудно получить следующие параметры: $D_{m1} = 1,6\cdot10^{-2}, \ \theta_{m1} = 1,447, \ \varphi_{m2} = 0,124 (7°06'); \ D_{m2} = 4,8\cdot10^{-2}, \ \theta_{m2} = 1,445, \ \varphi_{m2} = = 0,126 (7°22').$

В анализируемом случае величина тепловыделения в АПС зависит от соотношения теплофизических параметров контактирующих сред. Результаты исследований влияния замены воды другими химически чистыми жидкостями на диссипативные процессы в АПС представлены в статье [6]. В этой работе сопоставлены результаты расчетов некоторых

Рис. 8. Угловая зависимость коэффициента поглощения: 1 – классический расчет; 2 – расчет с учетом диссипации энергии в акустическом пограничном слое, частота 1,0 кГц; 3 – расчет с учетом диссипации энергии в акустическом пограничном слое, частота 10,0 кГц

Fig. 8. Absorption coefficient versus angle: *1* – classical estimation; *2* – estimation taking into account energy dissipation in acoustic boundary layer, frequency 1,0 kHz; *3* – estimation taking into account energy dissipation in acoustic boundary layer, frequency 10,0 kHz

параметров, характеризующих диссипацию энергии в АПС поверхности полубесконечного тела, изготовленного из нержавеющей стали AISI 316L. Результаты расчетов представлены в таблице. Расчеты проводились при $T_0 = 293$ К (20 °C) и $P_0 = 1,0$ атм; частоты 0,5 кГц и 5,0 кГц.

Для удобства сопоставления результатов расчета в таблицу внесены также параметры поверхности раздела «вода – сталь 30», полученные в этой работе. Эти параметры внесены в строку 2 таблицы и выделены курсивом.

Рис. 9. Угловая зависимость коэффициента поглощения звука: 1 – частота 1,0 кГц; 2 – частота 10,0 кГц

Fig. 9. Sound absorption coefficient versus angle: 1 - 1,0 kHz; 2 -10,0 kHz

Из таблицы видно, что граница «вода – сталь AISI 316L» обеспечивает минимальное поглощение звука поверхности по сравнению с другими жидкостями, параметры которых помещены в таблицу. Из данных, представленных в таблице, видим, что с понижением частоты значения D_m уменьшаются, но при этом также становится меньше величина углов скольжения ϕ_m . Минимальные значения ϕ_m имеют касторовое масло, керосин и метиловый спирт. Из жидкостей, представленных в таблице, касторовое масло обеспе-

Численные значения параметров, характеризующих диссипацию энергии в акустическом пограничном слое границы «жидкость – сталь AISI 316L» [6]

Numerical parameters of energy	y dissipation in acoustic k	ooundary layer at «fluid –	steel AISI 316L» interface [6]
--------------------------------	-----------------------------	----------------------------	--------------------------------

Жидкость	$\frac{\rho_1 c_1}{\rho_2 c_2}$	$\frac{c_1}{c_2}$	<i>D_{m1}</i> 5,0 кГц	<i>D_{m2}</i> 0,5 кГц	θ _{<i>m</i>1} , рад	θ _{<i>m</i>2} , рад	Ф _{<i>m</i>1} , рад	ф _{<i>m</i>2} , рад
Вода	0,041	0,330	0,019	0,006	1,450	1,451	0,121	0,120
«Вода – сталь 30»	0,038	0,297	0,028	0,009	1,447	1,448	0,124	0,123
Касторовое масло	0,039	0,325	0,081	0,027	1,452	1,456	0,119	0,114
Керосин	0,030	0,293	0,046	0,015	1,469	1,471	0,102	0,100
Метиловый спирт	0,025	0,255	0,054	0,018	1,472	1,474	0,099	0,097

чивает максимальное поглощение звука в АПС границы раздела «жидкость – сталь».

Можно предположить, что при скольжении фронта бегущей звуковой волны вдоль поверхности твердого тела в любых жидкостях будет наблюдаться повышенное поглощение звука. Такое скольжение фронта звуковой волны обычно наблюдается в заполненных жидкостями трубах и волноводах с твердыми стенками, по которым распространяются нормальные звуковые волны нулевого порядка.

Сопоставим теперь результаты расчетов D_m на границах раздела «вода – сталь AISI 316L» и «вода – сталь 30». Значения D_m , рассчитанные для этих случаев, показаны в строках 1 и 2 таблицы. Нетрудно заметить, что значения коэффициентов D_{m1} и D_{m2} на поверхности стали 30 в 1,5 раза превышают соответствующее значение поверхности нержавеющей стали AISI 316L.

В докладах [5, 7] представлены расчеты поглощения звука на поверхностях твердых тел, изготовленных из стали 40 и нержавеющей стали 12Х8Н10Т. Показано, что на поверхности тела из стали 12Х8Н10Т значения D_{m1} и D_{m2} составляют 0,8 от соответствующих значений поверхности тела из стали AISI 316L, а на поверхности тела из стали 40 значения D_{m1} и D_{m2} в 2 раза больше этих значений для поверхности тела из стали AISI 316L. Таким образом, подбором соответствующих значений теплофизических параметров твердого тела можно обеспечить как увеличение, так и уменьшение диссипации акустической энергии поверхностью твердого тела, ограничивающего жидкость.

Заключение

Conclusion

Представленные в работе выражения для расчета коэффициентов и отражения (4), и прохождения (5) можно применять во всем диапазоне частот, используемом в гидроакустике и ультразвуковой дефектоскопии. На частотах ниже 10 кГц при углах падения звуковой волны θ , близких к 0, при проведении расчетов можно использовать классические выражения для расчета коэффициентов отражения (1) и прохождения (2).

Формирование АПС и диссипативные процессы, протекающие в АПС поверхности твердого металлического тела, заметно проявляются при углах падения волны $\theta \ge \theta_{fr}$, где θ_{fr} – угол полного внутреннего отражения волны. Коэффициент поглощения волны $D \ne 0$.

Угловые зависимости коэффициента поглощения $D(\theta)$ всегда имеют максимум D_m , наблюдающийся при углах падения $\theta = \theta_m$, близких к 0,5 π .

Величина тепловыделения в АПС зависит от соотношения теплофизических параметров контактирующих сред. Соответствующим подбором пар «жидкость – твердое тело» можно получить границу раздела сред, имеющую повышенное или пониженное поглощение акустической энергии.

Список использованной литературы

- Легуша Ф.Ф. Расчет коэффициентов отражения и прохождения плоской волны на границе раздела жидких сред с учетом их вязкости и теплопроводности // Письма в Журнал технической физики. 1982. Т. 8, № 22. С. 1390–1392.
- Легуша Ф.Ф. Поглощение Константинова на границе раздела жидких полупространств // Журнал технической физики. 1984. Т. 54, № 4. С. 671–678.
- 3. Легуша Ф.Ф. Эффект Константинова и поглощение звука в неоднородных средах // Успехи физических наук. 1984. Т. 144, № 3. С. 509–522.
- Легуша Ф.Ф., Григорьева Н.С., Клюбина К.А. Формирование акустического пограничного слоя вблизи поверхности жидкость – твердое абсолютно теплопроводное тело // Труды СПбГМТУ. 2023. № 2. С. 30–46.
- Легуша Ф.Ф., Пялов К.Н., Чижов Г.В. Влияние процесса формирования акустического пограничного слоя на параметры звуковой волны, взаимодействующей с границей раздела жидкость – твердое тело // Труды Всерос. конференции «Прикладные технологии гидроакустики и гидрофизики». Санкт-Петербург : Лема, 2023. С. 444–447.
- Legusha F., Pialov K., Chizhov G. Study of Angular Dependence of Sound Absorption Coefficient at the Fluid – Solid Interface // 2022 International Conference on Dynamics and Vibroacoustics of Machines (DVM). [S. l.] : IEEE, 2022. Pag. var. (4 p.). DOI: 10.1109/DVM55487.2022.9930936.
- Легуша Ф.Ф., Пялов К.Н., Чижов Г.В. Исследование угловых зависимостей коэффициента поглощения звука на границе раздела жидкость – твердое тело // Тезисы докладов Шестой Международной научнотехнической конференции «Динамика и виброакустика машин» (DVM-2022). Самара : Изд-во Самар. ун-та, 2023. С. 161–163.
- Бреховских Л.М., Годин О.В. Акустика неоднородных сред : в 2 т. Т. 1. Основы теории отражения и распространения звука. Москва : Наука, 2007. 442 с.

References

- Legusha F.F. Calculation of reflection and transmission coefficient of plane wave at fluid interface taking into account viscosity and heat conductivity // Letters to Journal of Technical Physics. 1982. v. 8, No. 22. P. 1390–1392 (*in Russian*).
- Legusha F.F. Konstantinov absorption at fluid half-space interface // Journal of Technical Physics. 1984. V. 54, No. 4. P. 671–678 (*in Russian*).
- Legusha F.F. Konstantinov effect and sound absorption in non-homogenous media // Success of physical sciences. 1984. V. 144, No. 3. P. 509–522 (in Russian).
- Legusha F.F., Grigorieva N.S., Klyubina K.A. Generation of acoustic boundary layer near the interface of fluid and absolutely heat-conducting solid// Transactions of SMTU. 2023. No. 2. P. 30–46.
- Legusha F.F., Pyalov K.N., Chizhov G.V. Influence of acoustic boundary layer generation process on parameters of sound wave interacting with fluid – solid interface// Transactions of Applied Hydroacoustics and Hydrophysics technologies. St. Petersburg: Lema, 2023. P. 444–447 (in Russian).
- Legusha F., Pialov K., Chizhov G. Study of Angular Dependence of Sound Absorption Coefficient at the Fluid – Solid Interface // 2022 International Conference on Dynamics and Vibroacoustics of Machines

(DVM). [S. l.] : IEEE, 2022. Pag. var. (4 p.). DOI: 10.1109/DVM55487.2022.9930936.

- Legusha F.F., Pyalov K.N., Chizhov G.V. Study on angular dependence of sound absorption coefficient at fluid – solid interface // Abstracts of the Sixth International Science & Engineering Conference "Dynamics and Vibroacoustics of Machines" (DVM-2022). Samara: published by Samara National Research University, 2023. P. 161–163 (in Russian).
- Brekhovskikh L.M. Godin O.V. Acoustics of inhomogeneous media in 2 volumes. V. 1. Fundamentals of sound reflection and propagation theory. Moscow: Nauka, 2007. P. 442 (*in Russian*).

Сведения об авторе

Пялов Кирилл Николаевич, конструктор АО «ЦКБ МТ Рубин», аспирант кафедры физики ФГБОУ ВО «Санкт-Петербургский государственный морской технический университет». Адрес: 191119, Россия, Санкт-Петербург, ул. Марата, д. 90. Тел.: +7 (812) 407-51-32. E-mail: kirpyalov@yandex.ru.

About the author

Kirill N. Pyalov, constructor, JSC CDB ME, postgraduate student of St. Petersburg State Marine Technical University. Address: 90, Marata str., St. Petersburg, Russia, post code 191119. Tel.: +7 (812) 407-51-32. E-mail: kir-pyalov@yandex.ru.

> Поступила / Received: 05.07.23 Принята в печать / Accepted: 27.07.23 © Пялов К.Н., 2023