TRANSACTIONS OF THE KRYLOV STATE RESEARCH CENTRE

Science journal

 
ISSN (print) 2542-2324 /(online) 2618-8244


Articles of The Transactions of KSRC








Computer-based model of asynchronous electric propulsion drive with three stator windings



Full text article ( in russian)

Year

 
2021

Issue

 
395

Volume

 
1

Pages

 
132-140

Caption

 
Computer-based model of asynchronous electric propulsion drive with three stator windings

Authors

 
Kalinin I.

Keywords

 
electric propulsion system, asynchronous motor, electric propulsion drive, computer-based model

DOI

 
10.24937/2542-2324-2021-1-395-132-140

Summary

 
Object and purpose of research. This paper discusses electric propulsion system of leader icebreaker. Its purpose was to develop mathematical and computer-based model of electric propulsion drive powered by asynchronous motor with three stator windings for further investigation of steady, transitional, asymmetric and emergency operation scenarios of electric power and propulsion system for the leader icebreaker
Subject matter and methods.Hardware and methods for computer-based simulation of complex engineering structures.
Main results. Development of the mathematical model representing asynchronous motor with three windings in phase coordinates. Computational studies on direct startup of 15 MW propulsion motor, as well as on steady and transitional operational conditions of ship electric power system consisting of 36 MW synchronous genset, two-winding transformers and electric propulsion drive with 15 MW asynchronous motor in phase coordinates with three stator windings and three-level frequency converter. Calculation of voltage non-sinusoidality ratio for MSB buses with operation of 15 MW propulsion motor driven by 36 MW synchronous genset.
Conclusion. Mathematical model of asynchronous motor suggested in this paper could be used to calculate steady and transitional operation scenarios of marine power systems with frequency-controlled three-winding asynchronous motor, as well as to calculate electromechanical and electromagnetic processes and refine frequency control algorithms. This is especially relevant because each of the asynchronous electric machines used in the electromechanical assemblies of leader icebreaker propulsion motors has three stator windings, and this icebreaker is the first experience of applying a 15 MW marine electric drive.

Rubrics

 
Ship powering and electric systems

Back to the list



 





 
Login:
Password:
Register
Forgot your password?


Last issues

All rights reserved © Krylov state research centre, 2017 — 2022


ISSN (print) 2542-2324 / ISSN (online) 2618-8244

Address: Moskovskoye shosse, 44, Saint-Petersburg, 196158

Phone: +7(812) 415-49-80