TRANSACTIONS OF THE KRYLOV STATE RESEARCH CENTRE

Science journal

 
ISSN (print) 2542-2324 /(online) 2618-8244


Articles of The Transactions of KSRC








On one implementation of collective behavior in a group of underwater robots



Full text article ( in russian)

Year

 
2021

Issue

 
20212

Volume

 
2

Pages

 
7-16

Caption

 
On one implementation of collective behavior in a group of underwater robots

Authors

 
Vorobyev V., Karpov V., Nasedkin A.

Keywords

 
bio-inspired underwater robot, underwater robotic network, underwater communications, schooling behavior elements for underwater drones, stealthy intelligence, surveillance and reconnaissance

DOI

 
10.24937/2542-2324-2021-2-S-I-7-16

Summary

 
This paper discusses underwater robotic networks from the standpoint of stealthy surveillance by means of bio-inspired drones. “Bio-inspired” means that various hardware, software and technology solutions implemented in a robot have biological basis and rely on the studies in ethology and morphology of living organisms. In underwater robotics, this approach makes it possible to develop the vehicles that resemble sea life in terms of appearance and ehavior and therefore are harder to detect for both animal and human observer, which facilitates the tasks of water area surveil lance and fauna research observations. This work is meant to develop and refine a number of basic collective behavior patterns for this kind of robots, which is necessary to make robots as similar to the sea life in their operation area as possible to reduce their chances of being detected. Basic behavior algorithms for robots were developed as per the findings of ichthyological and ethological studies and also relying on certain points of the automata theory. A number of functions for the lower-level control systems were developed through simulation. The experiments were mostly performed in Robotic Test Tank of the Kurchatov Institute on a real shoal of under water robots developed under this project. The results of this study made it possible to develop one of the basic patterns in shoaling behavior of robots, i.e. schooling after a non-established leader whose position is disputed. In real environment, this pattern was tested on three fish-like underwater robots with two-level control system. Another output of the study is a short-range infrared communication system for limited data exchange between drones. Experimental validation of this system and the pattern of schooling after a non-established lead er implemented at the top level of robot control system have confirmed the viability of suggested solutions. This mechanisms, as well as technical and technological solutions yielded by this work will become the basis for further efforts towards development of a bio-inspired underwater robot. The algorithm of schooling after a non-established leader plays a key role in further improvement of collective behavior patterns for drones, like shoaling.

Back to the list



 





 
Login:
Password:
Register
Forgot your password?


Last issues

All rights reserved © Krylov state research centre, 2017 — 2022


ISSN (print) 2542-2324 / ISSN (online) 2618-8244

Address: Moskovskoye shosse, 44, Saint-Petersburg, 196158

Phone: +7(812) 415-49-80