СУДОВЫЕ ЭНЕРГЕТИЧЕСКИЕ УСТАНОВКИ И ЭЛЕКТРОЭНЕРГЕТИКА

УДК 629.5.03-843.8+621.3.017:621.438

EDN: OFSGBA

А.А. Крюков, Р.Р. Симашов

ФГБОУ ВО «Дальневосточный государственный технический рыбохозяйственный университет», Владивосток, Россия

ЧИСЛЕННОЕ МОДЕЛИРОВАНИЕ ПОТЕРЬ ЭНЕРГИИ В СОПЛОВОЙ С-9015А И РАБОЧЕЙ Р-2314A РЕШЕТКАХ

Объект и цель научной работы. Объектом исследования являются проточные части сопловой решетки С-9015A и рабочей решетки Р-2314A. Предмет — потери в ступени в этих решетках. Цель работы — оценка значений потерь кинетической энергии в сопловой решетке С-9015A и рабочей решетке Р-2314A, полученных в ходе проведения физического и численного экспериментов.

Материалы и методы. Методом исследования является численное моделирование течения газа с использованием вычислительной газовой динамики.

Основные результаты. Создание трехмерных моделей сопловой решетки C-9015A и рабочей решетки P-2314A. Определение граничных условий и особенностей проведения физического и численного экспериментов. Анализ значений потерь кинетической энергии в сопловой решетке C-9015A и рабочей решетке P-2314A, полученных в физическом эксперименте с результатами численного эксперимента. Выработка требований для подобных типов сопловых и рабочих решеток для проведения численного моделирования.

Заключение. Погрешности вычислений коэффициентов потерь между численным и физическим экспериментами незначительны, поэтому применение метода численного моделирования может рассматриваться в качестве замены физического эксперимента. Выполненный анализ результатов физических и численных экспериментов свидетельствует об адекватности виртуальной модели.

Ключевые слова: сопловой аппарат, коэффициент потерь, рабочее колесо, кинетическая энергия, численный метод, эксперимент, расчетная сетка, газодинамика.

Авторы заявляют об отсутствии возможных конфликтов интересов.

SHIP POWERING AND ELECTRIC GENERATION SYSTEMS

UDC 629.5.03-843.8+621.3.017:621.438

EDN: OFSGBA

A.A. Kryukov, R.R. Simashov

Far Eastern State Technical Fisheries University, Vladivostok, Russia

NUMERICAL SIMULATION OF ENERGY LOSSES IN NOZZLE S-9015A AND WORKING R-2314A GRIDS

Object and purpose of research. The object of the study is the flow parts of the nozzle grating S-9015A and the working grating R-2314A. The subject of the study is the step losses in these lattices. The aim of the study is to evaluate the values of kinetic energy losses in the nozzle grating C-9015A and the working grating R-2314A obtained during physical and numerical experiments.

Для цитирования: Крюков А.А., Симашов Р.Р. Численное моделирование потерь энергии в сопловой С-9015A и рабочей Р-2314A решетках. Труды Крыловского государственного научного центра. 2024; 3(409): 83–89.

For citations: Kryukov A.A., Simashov R.R. Numerical simulation of energy losses in nozzle S-9015A and working R-2314A grids. Transactions of the Krylov State Research Centre. 2024; 3(409): 83–89 (in Russian).

Materials and methods. The research method is numerical simulation of gas flow using computational gas dynamics.

Main results. Creation of three-dimensional models of the nozzle grating S-9015A and the working grating R-2314A. Determination of boundary conditions and features of conducting physical and numerical experiments. Analysis of the kinetic energy loss values in the nozzle grating C-9015A and the working grating R-2314A obtained in a physical experiment with the results of a numerical experiment. Development of requirements for similar types of nozzle and working gratings for numerical modeling.

Conclusion. The errors in calculating the loss coefficients between numerical and physical experiments are insignificant, therefore, the use of the numerical modeling method can be considered as a substitute for a physical experiment. The performed analysis of the results of physical and numerical experiments testifies to the adequacy of the virtual one.

Keywords: nozzle diaphragm, loss coefficient, runner, kinetic energy, numerical method, experiment, calculation grid, gas dynamics.

The authors declare no conflicts of interest.

Введение

Introduction

Перспективным методом повышения мощности судового дизеля является применение газотурбонаддува. Так, газотурбокомпрессор позволяет подавать в цилиндры дизеля больший объем воздуха, необходимый для большего количества топлива. Такие агрегаты являются приоритетными в качестве утилизационных устройств на флоте [1, 2].

Применение комбинированных судовых газотурбинных установок, описанных в ряде источников [3–5], также подразумевает применение газотурбокомпрессора в качестве утилизационного устройства. Применение замкнутых газотурбинных установок [6] целесообразно на подводных судах.

Развитие современного турбиностроения сопряжено с повышением эффективности указанных установок [7], в т.ч. их проектировании [8]. Совершенствование методик проектирования заключается в определении оптимальных значений угла выхода потока их рабочего колеса [9], профилировании соплового аппарата и рабочего колеса [10], а также определении геометрии выходного устройства установки [11].

Определение оптимальных форм и размеров газотурбинного двигателя позволяет уменьшать нагруженность установки [12], производить расчеты, определяющие интегральные характеристики при моделировании переменных режимов малорасходных турбин [13, 14], а также повышать экологическую безопасность судовой энергетической установки [15].

Повышение эффективности турбинной установки (как и любой другой) обуславливается увеличением КПД. Этот интегральный показатель зависит от потерь в турбинной ступени. Окружные

потери в ступени подразделяются на потери в сопловом аппарате (могут выражаться коэффициентом скорости ф [16]), потери в рабочем колесе и потери с выходной скоростью.

В парциальных турбинных ступенях [17], помимо вышеперечисленных, имеются и потери от частичного впуска. Сюда входят все потери, вызванные парциальностью (ε < 1,0), т.е. краевые и вентиляционные.

Существует множество инструментариев для определения расчетных потерь кинетической энергии в турбинной решетке профилей. Их можно классифицировать следующим образом:

- определение потерь на базе эмпирических молелей:
- определение потерь по результатам расчета невязкого обтекания профиля с расчетом пограничного слоя;
- численное моделирование вязкого турбулентного течения [18, 19].

Современным методом анализа течения рабочего тела в турбинных ступенях является применение модели течения вязкой среды, основанной на решении уравнений Навье – Стокса программным комплексом ANSYS CFX.

Объектом настоящего исследования являются проточные части сопловой решетки C-9015A и рабочей решетки P-2314A. Предмет — потери в ступени в этих решетках. Цель — оценка значений потерь кинетической энергии в сопловой решетке C-9015A и рабочей решетке P-2314A, полученных в ходе проведения физического и численного экспериментов.

Задачи исследования:

- создание трехмерных моделей сопловой решетки С-9015А и рабочей решетки Р-2314А;
- определение граничных условий и особенностей проведения физического и численного экспериментов;

- анализ значений потерь кинетической энергии в сопловой решетке C-9015A и рабочей решетке P-2314A, полученных в физическом эксперименте с результатами численного эксперимента;
- выработка рекомендаций проведения численных экспериментов для подобных типов сопловых и рабочих решеток для проведения численного моделирования.

Методом исследования является численное моделирование течения газа с использованием вычислительной газодинамики.

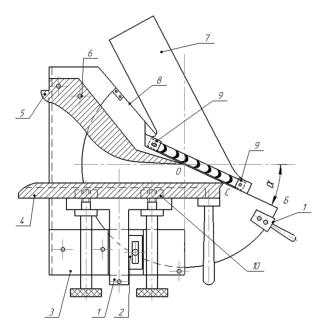
Методы и материалы

Methods and materials

В атласе профилей решеток осевых турбин [20] содержатся профили сопловых и рабочих решеток осевых турбин, рассчитанных на дозвуковые, трансзвуковые и сверхзвуковые скорости, а также показаны специальные профили лопаток малых высот, характерных сечений ступеней с длинными лопатками.

Основными аэродинамическими характеристиками, приведенными в атласе, являются коэффициенты потерь энергии в решетках ζ , углы выхода потока α_1 , β_2 в зависимости от различных режимных (M, Re, α_0 , β_1 и др.) и геометрических (t/b, l/b, α_v , β_v и др.) параметров.

На рис. 1 (см. вклейку) показана схема сопловой решетки C-9015A [21, с. 47].


Многие характеристики могут быть получены опытным путем – экспериментами прямых и кольцевых решеток в аэродинамических трубах методом траверсирования потока зондами. Основной объем экспериментальных данных относится к испытаниям решеток на воздух [20, с. 8–9].

Трехмерная модель, показанная на рис. 2 (см. вклейку), выполнена с использованием системы автоматизированного проектирования «Компас 3D».

Схема рабочей решетки P-2314A и ее трехмерная модель представлены соответственно на рис. 3 и рис. 4 (см. вклейку) [20, с. 59].

Физические эксперименты с неподвижными решетками выполняются на установках, схемы и конструкции которых определяются задачами исследования и принятой методикой эксперимента.

На рис. 5 [21, с. 644–649] приведен общий вид одной из рабочих частей для плоских решеток. Здесь верхняя стойка сопла 5 болтами 6 неподвиж-

Рис. 5. Установка для продувки турбинных решеток

Fig. 5. Aerodynamic test rig for turbine cascades

но крепится к корпусу 3 так, что ее выходная кромка совпадает с общей осью двух дисков 8. Диски 8 с помощью сухарей 7 неподвижно и соосно скреплены между собой. Нижняя стенка сопла 4 скользящими шпонками 10 и винтами 11 крепится к вертикальному ползуну 1, скрепленному с корпусом 3 винтом 2.

Перемещая стенку 4 относительно ползуна 1 и ползун относительно корпуса 3, можно изменять расстояние ОС в пределах ОБ при заданном угле входа в зависимости от длины исследуемого пакета. Изменение угла входа производится поворотом дисков 8 относительно корпуса 3.

Серия численных экспериментов течения рабочей среды может быть разделена на этапы, описанные в ряде исследований [22, 23].

Результаты

Results

Данное исследование проводилось при различных значениях степени расширения π_t , диапазон которого составлял 1,05÷2,0. В работе выходное давление на выходе из сопловой решетки и рабочего колеса составляет 10^5 Па, в зависимости от давления торможения P_0^* изменяется значение степени расширения. На рис. 6 (см. вклей-

ку) представлены поле числа Маха в сопловой решетке C-9015A при давлении торможения $P_0^*=130~\mathrm{k}\Pi a.$

Методика численного эксперимента, а также определение коэффициента скорости в сопловой решетке соответствуют исследованию соплового аппарата [24]. При выполнении серии экспериментов с последовательным повышением давления торможения создается полная картина значений коэффициентов скорости и потерь в сопловой решетке. Методика их определения дана в исследовании [25].

На рис. 7 (см. вклейку) представлены графики зависимости коэффициентов потерь в сопловой решетке от числа Маха на выходе из сопловых каналов.

Численное исследование рабочих решеток осуществляется с использованием стенда (рис. 5), который имитирует действие соплового аппарата, позволяющее получать на выходе поток рабочего тела под геометрический угол входа в рабочую решетку. На рис. 8 (см. вклейку) представлено поле числа Маха в рабочей решетке P-2314A при давлении торможения $P_0^*=130~\mathrm{k}\Pi a$.

Серия численных экспериментов с рабочей решеткой осуществляется по методике, описанной в исследовании [26]. На рис. 9 (см. вклейку) представлены графики зависимости коэффициентов потерь в рабочей решетке от числа Маха на выходе из рабочих каналов.

Из всех приведенных выше графиков зависимости потерь можно сделать вывод о целесообразности применения численного метода взамен физических экспериментов. Максимальное значение отклонений полученных коэффициентов потерь в сопловых решетках (С-9015A) находится в абсолютном значении 0,006. Для рабочих решеток (Р-2314A) соответствующее отклонение находится в абсолютном значении 0,0025.

Полученные значения коэффициентов скорости в сопловой и рабочей решетках позволяют оценить эффективность ступени, состоящей из этих решеток. Применение трехмерного моделирования имеет ряд преимуществ по сравнению с двухмерным.

Трехмерное численное моделирование позволяет, помимо профильных потерь, моделировать в зависимости от высоты лопатки величину концевых потерь. Моделирование суммарных потерь с разложением на составляющие является дальнейшей целью исследований.

Заключение

Conclusion

Анализ проведенного исследования приводит к следующим выводам:

- погрешности вычислений коэффициентов потерь между численным и физическим экспериментами незначительны, поэтому применение метода численного моделирования может рассматриваться в качестве замены физического эксперимента;
- выполненный анализ результатов физических и численных экспериментов свидетельствует об адекватности виртуальной модели;
- применение трехмерного численного исследования позволяет моделировать суммарные потери в сопловых и рабочих решетках, а также раскладывать их на составляющие, что может быть использовано для дальнейших исследований с данными решетками.

Список использованной литературы

- 1. Чехранов С.В., Симашов Р.Р. Перспективы утилизации теплоты уходящих газов на судах рыбопромыслового флота // Морские интеллектуальные технологии. 2023. Т. 4, ч. 1. С. 103–109. DOI: 10.37220/MIT.2023.62.4.013.
- Пассар А.В., Цыганкова Л.П. Эффективность радиально-осевой турбины комбинированного судового дизеля в зависимости от выбранного значения расчетной степени реактивности // Морские интеллектуальные технологии. 2023. Т. 2, ч. 1. С. 92–98. DOI: 10.37220/MIT.2023.60.2.011.
- Дологлонян А.В., Матвеенко В.Т., Клименко А.Г. Эффективность комбинированных газотурбинных установок на частичных нагрузках при различных видах нагружения // Морские интеллектуальные технологии. 2023. Т. 2, ч. 1. С. 104–115. DOI: 10.37220/MIT.2023. 60.2.013.
- Дологлонян А.В., Матвеенко В.Т., Клименко А.Г. Управление генерацией теплоты в когенерационных газотурбинных установках с регенерацией на частичных нагрузках при различных способах нагружения // Морские интеллектуальные технологии. 2023. Т. 3, ч. 1. С. 59–69. DOI: 10.37220/MIT.2023. 61.3.007.
- Дологлонян А.В., Матвеенко В.Т., Клименко А.Г. Эффективность комбинированных газотурбинных установок на частичных нагрузках, Морские интеллектуальные технологии. 2022. Т. 3, ч. 1. С. 109–117. DOI: 10.37220/MIT.2022.57.3.014.

- Матвеенко В.Т., Дологлонян А.В., Очеретяный В.А. Управление характеристиками замкнутых газотурбинных установок пропульсивных комплексов подводных судов // Морские интеллектуальные технологии. 2021. Т. 4, ч. 1. С. 66–70. DOI: 10.37220/ MIT.2021.54.4.033.
- Эффективность рабочих колес газовых осевых малоразмерных турбин / Арестов О.В., Цыганкова Л.П., Глушко Е.В., Морозова Н.Т. // Морские интеллектуальные технологии. 2023. Т. 2, ч. 1. С. 99–103. DOI: 10.37220/МІТ.2023.60.2.009.
- Скворцов Б.А. Особенности проектирования турбогенератора с повышенной частотой вращения 6000 об/мин // Труды Крыловского государственного научного центра. 2021. Вып. 4(398). С. 108–122. DOI: 10.24937/2542-2324-2021-4-398-108-122.
- Пассар А.В., Тимошенко Д.В., Фершалов Ю.Я. Оптимальные значения угла выхода потока из соплового аппарата радиально-осевой турбины в зависимости от режима ее работы // Морские интеллектуальные технологии. 2022. Т. 3, ч. 1. С. 129–135. DOI: 10.37220/MIT.2022.57.3.017.
- Чехранов С.В., Симашов Р.Р. Особенности профилирования лопаточного аппарата малорасходных турбин с большим углом поворота потока // Морские интеллектуальные технологии. 2022. Т. 2, ч. 1. С. 83–87. DOI: 10.37220/МІТ.2022.56.2.011.
- 11. Пономарев Н.Н. Выбор геометрии выходного устройства газотурбинной установки с минимальными потерями давления // Труды Крыловского государственного научного центра. 2022. Вып. 4(402). С. 101–108. DOI: 10.24937/2542-2324-2022-4-402-101-108.
- 12. Бабанин Н.В. Снижение динамической нагруженности газотурбинного двигателя // Труды Крыловского государственного научного центра. 2021. Спец. вып. 1. С. 109–110. DOI: 10.24937/2542-2324-2020-1-S-1-109-110.
- Чехранов С.В., Симашов Р.Р. Влияние вращающегося соплового аппарата на характеристики осевых малорасходных турбин // Морские интеллектуальные технологии. 2021. Т. 4, ч. 1. С. 86–89. DOI: 10.37220/ MIT.2021.54.4.036.
- Симашов Р.Р., Чехранов С.В. Определение расходных характеристик сопловых аппаратов со сверхзвуковыми осесимметричными соплами при моделировании переменных режимов малорасходных турбин // Морские интеллектуальные технологии. 2020. Т. 4, ч. 2. С. 39–43. DOI: 10.37220/MIT.2020.50.4.070.
- Улучшение системы удаления загрязняющих веществ из проточной части осевого компрессора газотурбинной установки / А.А. Смирнов, И.А. Богов,

- *В.В. Толмачев* [и др.] // Труды Крыловского государственного научного центра. 2021. Спец. вып. 1. С. 120–121. DOI: 10.24937/2542-2324-2020-1-S-1-120-121.
- 16. Коэффициент скорости сопловых аппаратов газовых осевых микротурбин / О.В. Арестов, Л.П. Цыганкова, Е.В. Глушко, Н.Т. Морозова // Морские интеллектуальные технологии. 2023. Т. 2, ч. 1. С. 80–84. DOI: 10.37220/MIT.2023.60.2.009.
- Соломахин Ю.В., Цыганкова Л.П., Коршунов В.Н. Распределение потерь кинетической энергии между сопловым аппаратом и рабочим колесом турбин на режимах частичного подвода газа // Морские интеллектуальные технологии. 2021. Т. 4, ч. 1. С. 122–126. DOI: 10.37220/MIT.2021.54.4.042.
- 18. *Киселев А.Ю.*, *Погодин Ю.М.* Совершенствование последних ступеней морских паровых агрегатов // Труды Крыловского государственного научного центра. 2021. Спец. вып. 1. С. 116–117. DOI: 10.24937/2542-2324-2020-1-S-1-116-117.
- 19. *Левенталь М.Ю.*, *Погодин Ю.М.*, *Миронов Ю.Р.* Расчетное определение потерь в турбинных решетках профилей // Морские интеллектуальные технологии. 2021. Т. 2, ч. 3. С. 104–109. DOI: 10.37220/MIT.2021. 52.2.040.
- 20. Дейч М.Е., Филиппов Г.А., Лазарев Л.Я. Атлас профилей решеток осевых турбин. Москва: Машиностроение, 1965. 96 с.
- Дейч М.Е. Техническая газодинамика. 2-е изд., перераб. Москва; Ленинград: Госэнергоиздат, 1961.
 671 с.
- 22. Крюков А.А., Чехранов С.В. Влияние относительной высоты рабочих лопаток на эффективность ступени центростремительной турбины с частичным облопачиванием рабочего колеса // Морские интеллектуальные технологии. 2023. Т. 4, ч. 1. С. 58–63. DOI: 10.37220/MIT.2023.62.4.007.
- 23. Determination of the velocity coefficient of a turbine nozzle diaphragm with partial blading of the runner / A.A. Kryukov, G.L. Rakov, S.V. Chekhranov, R.R. Simashov // IOP Conference Series: Materials Science and Engineering. 2020. Vol. 986, No. 1. P. 012045 (p. 1–8). DOI: 10.1088/1757-899X/986/1/012045.
- 24. Крюков А.А. Численное моделирование коэффициента скорости соплового аппарата малорасходной турбины // Вестник Государственного ун-та морского и речного флота им. адм. С.О. Макарова. 2021. Т. 13, № 6. С. 849–857. DOI: 10.21821/2309-5180-2021-13-6-849-857.
- Крюков А.А., Чехранов С.В. Численное исследование течения потока в ступени центростремительной турбины с частичным облопачиванием рабочего колеса //

- Морские интеллектуальные технологии. 2020. Т. 4, ч. 1. С. 114–120. DOI: 10.37220/МІТ.2020.50.4.016.
- 26. Крюков А.А. Численное исследование баланса потерь кинетической энергии в проточной части малорасходной центростремительной турбины // Вестник Государственного ун-та морского и речного флота им. адм. С.О. Макарова. 2022. Т. 14, № 4. С. 583–590. DOI: 10.21821/2309-5180-2022-14-4-583-590.

References

- Chehranov S.V., Simashov R.R. Prospects for the recycling of the heat of exhaust gases on ships of the fishing fleet // Marine Intellectual Technologies. 2023. Vol. 4, pt. 1. P. 103–109. DOI: 10.37220/MIT.2023.62.4.013 (in Russian).
- Passar A.V., Tsigankova L.P. Efficiency of the radial-axis turbine of a combined marine diesel engine depending on the selected value of the calculated degree of reactivity // Marine Intellectual Technologies. 2023. Vol. 2, pt. 1. P. 92–98. DOI: 10.37220/MIT.2023.60.2.011 (in Russian).
- Dologlonyan A.V., Matveenko V.T., Klimenko A.G. Efficiency of combined gas turbine plants at partial loads under different types of loading // Marine Intellectual Technologies. 2023. Vol. 2, pt. 1. P. 104–115. DOI: 10.37220/MIT.2023.60.2.013 (in Russian).
- Dologlonyan A.V., Matveenko V.T., Klimenko A.G. Control of heat generation in cogeneration gas turbine plants with regeneration at partial loads under various loading modes // Marine Intellectual Technologies. 2023. Vol. 3, pt. 1. P. 59–69. DOI: 10.37220/MIT.2023.61.3.007 (in Russian).
- Dologlonyan A.V., Matveenko V.T., Klimenko A.G. Efficiency of the combined gas turbine plants at partial loads // Marine Intellectual Technologies, 2022. Vol. 3, pt. 1. P. 109–117. DOI: 10.37220/MIT.2022.57.3.014 (in Russian).
- Matveenko V.T., Dologlonyan A.V., Ocheretyaniy V.A.
 Control of characteristics of closed gas turbine plants of submarines propulsion complexes // Marine Intellectual Technologies, 2021. Vol. 4, pt. 1. P. 66–70. DOI: 10.37220/MIT.2021.54.4.033 (in Russian).
- Efficiency of gas axial small turbine impellers / O.V. Arestov, L.P. Tsigankova, E.V. Glushko, N.T. Morozova // Marine Intellectual Technologies. 2023. Vol. 2, pt. 1. P. 99–103. DOI: 10.37220/MIT.2023.60.2.012 (in Russian).
- Skvortsov B.A. Specifics of turbo-alternator design with a high rotational speed of 6000 rpm // Transactions of Krylov State Research Centre. 2021. Vol. 4(398). P. 108–122. DOI: 10.24937/2542-2324-2021-4-398-108-122 (in Russian).

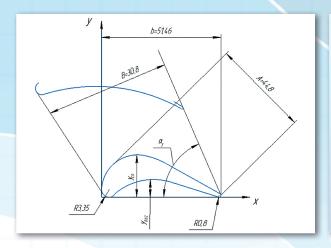
- Passar A.V., Timoshenko D.V., Fershalov Yu.Ya. Optimal values of the angle of exit of the flow from the nozzle apparatus radial-axial turbine, depending on the mode of its operation // Marine Intellectual Technologies. 2022. Vol. 3, pt. 1. P. 129–135. DOI: 10.37220/MIT.2022.57.3.017 (in Russian).
- Chehranov S.V., Simashov R.R. Features of profiling of low-consumption turbines blading with a large angle of flow rotation // Marine Intellectual Technologies. 2022. Vol. 2, pt. 1. P. 83–87. DOI: 10.37220/MIT.2022. 56.2.011 (in Russian).
- N.N. Ponomarev. Selection of gas turbine exit unit geometry with minimum pressure losses // Transactions of Krylov State Research Centre. 2022. Vol. 4(402).
 P. 101–108. DOI: 10.24937/2542-2324-2022-4-402-101-108 (in Russian).
- 12. *N.V. Babanin.* Reducing the dynamic loading of the gas turbine engine // Transactions of Krylov State Research Centre. 2021. Special issue 1. P. 109–110. DOI: 10.24937/2542-2324-2020-1-S-1-109-110 (*in Russian*).
- 13. *Chehranov S.V.*, *Simashov R.R.* Influence of a rotating nozzle diaphragm on the characteristics of axial lowconsumption turbines // Marine Intellectual Technologies. 2021. Vol. 4, pt. 1. P. 86–89. DOI: 10.37220/MIT.2021. 54.4.036 (*in Russian*).
- Simashov R.R., Chehranov S.V. Determination of mass flow characteristics of supersonic axisymmetric nozzle diaphragms in modeling variable duties of lowconsumption turbines // Marine Intellectual Technologies. 2020. Vol. 4, pt. 2. P. 39–43. DOI: 10.37220/ MIT.2020.50.4.070 (in Russian).
- 15. Improving the pollutant removal system from the flow path of the axial compressor of a gas turbine plant / A.A. Smirnov, I.A. Bogov, V.V. Tolmachev [et al.] // Transactions of Krylov State Research Centre. 2021. Special issue 1. P. 120–121. DOI: 10.24937/2542-2324-2020-1-S-1-120-121 (in Russian).
- Speed coefficient of nozzle apparatuses of gas axial microturbines / O.V. Arestov, E.V. Glushko, N.T. Morozova // Marine Intellectual Technologies. 2023. Vol. 2, pt. 1. P. 80–84. DOI: 10.37220/MIT.2023.60.2.009 (in Russian).
- Solomakhin Yu.V., Tsigankova L.P., Korshunov V.N..
 Distribution of kinetic energy losses between nozzles and turbine impeller on partial gas supply modes // Marine Intellectual Technologies. 2021. Vol. 4, pt. 1. P. 122–126.
 DOI: 10.37220/MIT.2021.54.4.042 (in Russian).
- Kiselev A.Yu., Pogodin Yu.M. Improvement of the last stages of marine steam units // Transactions of Krylov State Research Centre. 2021. Special issue 1. P. 116– 117. DOI: 10.24937/2542-2324-2020-1-S-1-116-117 (in Russian).

- Leventhal M.Yu., Pogodin Yu.M., Mironov Yu.R. Improving the methodology for calculation of energy losses in axial turbine cascades // Marine Intellectual Technologies. 2021. Vol. 2, pt. 3. P. 104–109. DOI: 10.37220/MIT.2021.52.2.040 (in Russian).
- 20. *Deitch M.E.*, *Filippov G.A.*, *Lazarev L.Ya*. Atlas of axial turbine cascades. Moscow: Mashinostroeniye, 1965. 96 p. (*in Russian*).
- 21. *Deitch M.E.* Technical gas dynamics. 2nd edition, reprinted. Moscow; Leningrad: Gosenergoizdat, 1961. 671 p. (*in Russian*).
- 22. *Kryukov A.A.*, *Chehranov S.V.* The effect of the relative height of the working blades on the efficiency of the inflow turbine with partial blading of the runner // Marine Intellectual Technologies. 2023. Vol. 4, pt. 1. P. 58–63. DOI: 10.37220/MIT.2023.62.4.007 (*in Russian*).
- Determination of the velocity coefficient of a turbine nozzle diaphragm with partial blading of the runner / A.A. Kryukov, G.L. Rakov, S.V. Chekhranov, R.R. Simashov // IOP Conference Series: Materials Science and Engineering. 2020. Vol. 986, No. 1. P. 012045 (p. 1–8). DOI: 10.1088/1757-899X/986/1/012045.
- 24. Kryukov A.A. Numerical simulation of the velocity coefficient of the nozzle diaphragm of a low-consumption turbine // Bulletin of Admiral Makarov State University of Maritime and Inland Shipping. 2021. Vol. 13, No. 6. P. 849–857. DOI: 10.21821/2309-5180-2021-13-6-849-857 (in Russian).
- 25. Kryukov A.A., Chehranov S.V. Numerical experiment of flow in stages of inflow turbine with fractional blading of the rotor wheel // Marine Intellectual Techno-

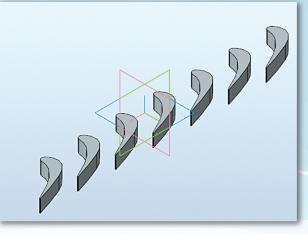
- logies. 2020. Vol. 4, pt. 1. P. 114–120. DOI: 10.37220/MIT.2020.50.4.016 (in Russian).
- 26. Kryukov A.A. Numerical study of the balance of kinetic energy losses in the flow part of a low-consumption inflow turbine // Bulletin of Admiral Makarov State University of Maritime and Inland Shipping. 2022. Vol. 14, No. 4. P. 583–590. DOI: 10.21821/2309-5180-2022-14-4-583-590 (in Russian).

Сведения об авторах

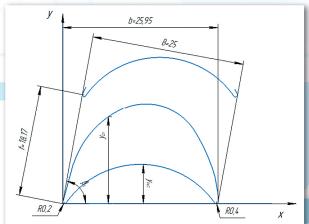
Крюков Алексей Алексеевич, старший преподаватель кафедры инженерных дисциплин ФГБОУ ВО «Дальневосточный государственный технический рыбохозяйственный университет». Адрес: 690087, Россия, Владивосток, Луговая ул., д. 526. E-mail: aleksey902@mail.ru.

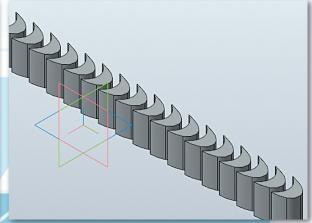

Симашов Рафаиль Равильевич, к.т.н., доцент, доцент кафедры судовых энергетических установок ФГБОУ ВО «Дальневосточный государственный технический рыбохозяйственный университет». Адрес: 690087, Россия, Владивосток, Луговая ул., д. 526. E-mail: forsimashov@yandex.ru.

About the authors


Aleksey A. Kryukov, Senior Lecturer of the Engineering disciplines department, Far Eastern State Technical Fisheries University. Address: 52B, Lugovaya st., Vladivostok, Russia, post code 690087. E-mail: aleksey902@mail.ru.

Rafail R. Simashov, Cand. Sci. (Eng), Associate professor, Cand. Sci. Tech. Associate professor of Department of Marine Power Systems Far Eastern State Technical Fisheries University. Address: 52B, Lugovaya st., Vladivostok, Russia, post code 690087. E-mail:forsimashov@yandex.ru.


Поступила / Received: 26.03.24 Принята в печать / Accepted: 21.08.24 © Крюков А.А., Симашов Р.Р., 2024 Труды Крыловского государственного научного центра. Т. 3, № 409. 2024 Transactions of the Krylov State Research Centre. Vol. 3, no. 409. 2024


Рис. 1. Схема сопловой решетки C-9015A **Fig. 1.** Diagram of nozzle cascade S-9015A

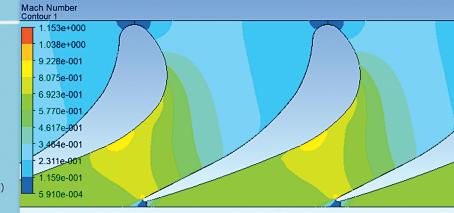

Рис. 2. Трехмерная модель сопловой решетки C-9015A **Fig. 2.** Three-dimensional model of nozzle cascade S-9015A

Рис. 3. Схема рабочей решетки P-2314A **Fig. 3.** Diagram of blade system R-2314A

Рис. 4. Трехмерная модель рабочей решетки P-2314A **Fig. 4.** Three-dimensional model of blade system R-2314A

Рис. 6. Поле числа Маха в сопловой решетке C-9015A при давлении торможения $P_0^*=130~\mathrm{kTa}$

Fig. 6. Velocity field (Mach speeds) in blade system S-9015A at deceleration pressure $P_0^*=130~\mathrm{kPa}$

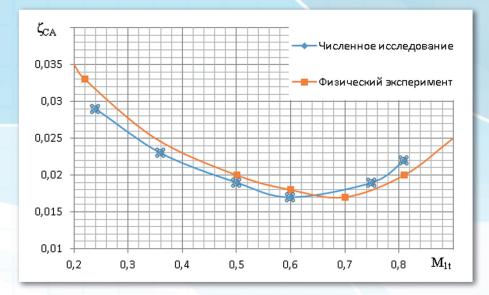
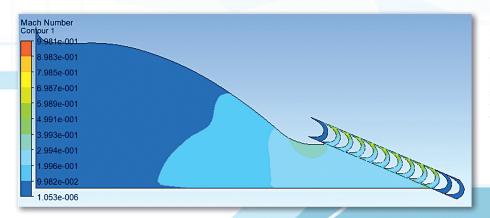



Рис. 7. Зависимость коэффициентов потерь в сопловой решетке от числа Маха на выходе из сопловых каналов

Fig. 7. Loss coefficients of blade system as function of Mach number at nozzle duct outlet

Рис. 8. Поле числа Маха в рабочей решетке P-2314A при давлении торможения $P_0^*=130~\mathrm{kTa}$

Fig. 8. Velocity field (Mach speeds) in blade system R-2314A at deceleration pressure $P_0^* = 130 \text{ kPa}$

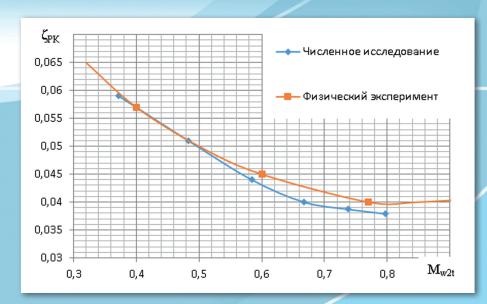


Рис. 9. Зависимость коэффициентов потерь в рабочей решетке от числа Маха на выходе из рабочих каналов

Fig. 9. Loss coefficients of blade system as function of Mach number at nozzle duct outlet