DOI: 10.24937/2542-2324-2022-1-399-43-48 УДК 532.582.5+532.527

В.В. Багринцев, Н.В. Маринич

ФГУП «Крыловский государственный научный центр», Санкт-Петербург, Россия

ОПРЕДЕЛЕНИЕ ФОРМЫ ХВОСТОВОЙ ОКОНЕЧНОСТИ ПРОФИЛЯ КРЫЛА

Объект и цель научной работы. Исследуется возможность снижения интенсивности вихрей, сходящих с выходящей кромки профиля крыла, а соответственно, и величины нестационарных сил переменного знака путем изменения геометрии профиля.

Материалы и методы. Выполнены теоретические расчеты в идеальной жидкости, численное моделирование в вязкой несжимаемой жидкости, а также проведен эксперимент в кавитационной трубе для крыла с традиционной геометрией профиля (для подруливающих устройств) и для крыльев с модернизированной профилировкой.

Основные результаты. Получены гидродинамические характеристики (коэффициенты подъемной силы и силы сопротивления) исследуемых профилей. Также в процессе выполнения эксперимента получены кавитационные характеристики. В качестве результата представлено изменение коэффициентов подъемной силы и силы сопротивления у модернизированных профилей (в сравнении с традиционными), полученное из теоретических расчетов и эксперимента.

Заключение. По величине изменения гидродинамических характеристик сделаны выводы об эффективности предлагаемого метода и целесообразности проведения испытаний с гребным винтом.

Ключевые слова: профиль, отрыв пограничного слоя, гидродинамические характеристики, кромочный шум. *Авторы заявляют об отсутствии возможных конфликтов интересов.*

DOI: 10.24937/2542-2324-2022-1-399-43-48 UDC 532.582.5+532.527

V. Bagrintsev, N. Marinich

Krylov State Research Centre, St. Petersburg, Russia

TAIL SHAPE DETERMINATION FOR FOIL PROFILE

Object and purpose of research. This paper discusses mitigation of vortex shedding from the trailing edge of foil profile and, accordingly, of alternating-sign unsteady forces through modification of foil geometry.

Materials and methods. Theoretical calculations for perfect fluid, numerical simulation in viscous incompressible fluid, cavitation tunnel tests of conventional thruster-type foils and the foils with modified profile.

Main results. The study yielded hydrodynamic parameters (lift and resistance coefficients) for the profiles under investigation. The tests also yielded cavitation data. As a result, it was possible to compare lift and resistance coefficients of conventional and modified profiles as per theoretical estimates and test data.

Conclusion. Analysis of the changes in hydrodynamic parameters has shown that the method suggested by the authors is quite efficient and it is practicable to perform further tests with propeller.

Keywords: profile, boundary layer separation, hydrodynamic performance, edge noise.

The authors declare no conflicts of interest.

Для цитирования: Багринцев В.В., Маринич Н.В. Определение формы хвостовой оконечности профиля крыла. Труды Крыловского государственного научного центра. 2022; 1(399): 43–48.

For citations: Bagrintsev V., Marinich N. Tail shape determination for foil profile. Transactions of the Krylov State Research Centre. 2022; 1(399): 43–48 (in Russian).

Введение

Introduction

Одним из наиболее эффективных источников шума кораблей вообще и подводных лодок в частности во всех представляющих опасность с точки зрения утраты акустической скрытности диапазонах частот являются гребные винты (ГВ) [1]. Шум, возникающий при работе ГВ, подразделяют на кавитационный и докавитационный. Последний, в свою очередь, включает в себя шум в инфразвуковом частотном диапазоне и шум в области звуковых частот.

Современные методы проектирования позволяют достаточно успешно бороться с кавитацией на гребных винтах, а соответственно, и с вызванными ею нежелательными эффектами. Появление докавитационного шума в инфразвуковом частотном диапазоне связано с пространственной неоднородностью и турбулентными пульсациями скорости в следе корпуса корабля [1, 2]. Для борьбы с этим используют такие решения, как изменение числа лопастей, уменьшение диаметра ГВ, придание лопастям ГВ саблевидной формы [3].

Акустическое излучение, появляющееся в области звуковых частот, по своей физической природе принципиально отличается от рассмотренного выше инфразвукового излучения. Оно не связано с возникающими на лопастях результирующими нестационарными силами [4, 5]. Физическая природа акустического излучения некавитирующего винта в области звуковых частот связана с турбулентным характером обтекания лопастей. В связи с большой ролью выходящей кромки лопасти ГВ в формировании вихреобразования и связанного с ним акустического излучения рассматриваемый механизм, по предложению одного из первых его исследователей Дж. Фокса Уильямса, получил название «кромочного шума» [6].

Отрыв турбулентных вихрей сопровождается, с одной стороны, возникновением мощных звуковых импульсов, а с другой – появлением нестационарных сил переменного знака как на цилиндре, схематизирующем обтекаемую нить, так и на выходящей кромке лопасти [1]. В совокупности эти два фактора являются причиной возникновения кромочного шума. При уменьшении области отрыва снижаются размер и интенсивность сходящих вихрей, а соответственно, снижаются величины высокочастотных нестационарных сил переменного знака.

Целью данной работы является проверка эффективности предложенного метода для уменьшения области отрыва турбулентного пограничного слоя, который располагается вблизи выходящей кромки и занимает малую по размерам зону [7]. Уменьшение области отрыва выполняется путем ее заполнения объемом крыла (лопасти в случае ГВ), при этом изменяется геометрия профиля. В данной работе сравнивается влияние этого изменения на гидродинамические характеристики профиля по результатам теоретических расчетов в идеальной жидкости, численного моделирования в вязкой несжимаемой жидкости и эксперимента в кавитационной трубе. Указанные расчеты и эксперимент выполнялись для профиля крыла бесконечного размаха. При рассмотрении полученных результатов производится оценка эффективности используемого подхода с целью его дальнейшего применения при проектировании лопастей ГВ.

Исследуемый объект

Object of study

Исследуемым объектом является профиль, традиционно использующийся при проектировании гребных винтов подруливающих устройств. Данный профиль, представленный на рис. 1, является сегментом. Его особенность состоит в том, что он не имеет заостренной выходящей кромки. В связи с этим при выполнении численного и экспериментального моделирования размер зоны отрыва практически не меняется в широком диапазоне чисел Рейнольдса.

Численное моделирование

Numerical simulation

Для первичной оценки обтекания исходного профиля выполнено численное моделирование в пакете OpenFoam для углов атаки 2,5°; 5°; 7°; 8° в вязкой

Рис. 1. Исходный профиль **Fig. 1.** Initial profile

несжимаемой жидкости. Число Рейнольдса рассчитывается по формуле:

$$\operatorname{Re} = \frac{l \cdot v}{v} = 1 \cdot 10^6,$$

где l – длина хорды профиля, v – кинематическая вязкость жидкости, v – скорость набегающего потока.

На рис. 2 представлены результаты расчета в виде зависимостей гидродинамических характеристик профиля (коэффициентов подъемной силы Cy и силы сопротивления Cx) от угла атаки α . Относительно них будет производиться оценка влияния достраиваемой области выходящей кромки. Помимо коэффициентов, будут проанализированы и абсолютные величины (Rx и Ry), поскольку заполнение области отрыва приводит к увеличению площади крыла и, соответственно, к уменьшению значений гидродинамических коэффициентов.

Поскольку выходящая кромка профиля не имеет достаточного заострения, обтекание в этой области получается нестационарным. В связи с этим величины гидродинамических характеристик на рис. 2 приведены осредненными по времени. Из графика на рис. 2 следует, что критическим углом атаки для данного профиля является угол 7°. При превышении этого значения область отрыва начитает появляться около входящей кромки. Взяв запас, примем за расчетное значение угол атаки 5°.

Для определения величины и расположения отрывной области исследовалось поле скоростей. В качестве примера на рис. 3 (см. вклейку) представлено поле скоростей вокруг профиля под углом атаки 5° для одного момента времени.

На рис. 3 можно увидеть точку начала отрывной области на нагнетающей стороне профиля в конкретный момент времени (указана стрелкой). Поскольку положение точек отрыва изменялось со временем, в качестве расчетных были взяты крайние для отрывной области (ближайшие к выходящей кромке). Относительно этих точек и формы отрывной области строилась новая форма выходящей кромки.

Рис. 2. Коэффициенты подъемной силы и силы сопротивления исходного профиля в зависимости от угла атаки

Fig. 2. Lift and resistance coefficients of initial profile versus attack angle

На рис. 4 представлены примеры исследуемых профилей. Помимо профилей с достроенными выходящими кромками, рассчитаны профили, у которых входящая кромка имела такую же достраиваемую форму (рис. 4b). Это интересно, поскольку винты с подобными профилями могут работать в режиме реверса (актуально для подруливающих устройств). На рис. 5 (см. вклейку) представлен пример построения выходящей кромки в области отрыва.

Численное моделирование в вязкой несжимаемой жидкости было проведено для девяти вариантов профилей с углом атаки 5°. Полученные гидродинамические характеристики представлены на рис. 6 (см. вклейку). Наблюдается снижение как самого коэффициента подъемной силы, так и ее размерного значения для модернизированных профилей. Однако величина качества крыла (отношение Cy/Cx) при этом увеличивается. Подобный эффект (снижение подъемной силы) может быть нивелирован небольшим увеличением угла атаки.

Для дальнейших исследований выбраны профили «Вариант 1» и «Вариант 6» как оптимальные

Рис. 4. Исследуемые профили **Fig. 4.** Profiles under investigation

Труды Крыловского государственного научного центра. Т. 1, N 0 399. 2022 Transactions of the Krylov State Research Centre. Vol. 1, no. 399. 2022

Рис. 9. Экспериментальная установка (смонтирована в кавитационной трубе с обтекателем и направляющими шпильками)

Fig. 9. Test rig (assembled in the cavitation tunnel with fairing and guide pins)

по совокупности качества крыла (Cy/Cx) и величине изменения подъемной силы относительно исходного профиля. На рис. 7 (см. вклейку) представлено поле скоростей вокруг модифицированного профиля («Вариант б»). При его сравнении с полем скоростей вокруг исходного профиля отмечается уменьшение области отрыва турбулентного пограничного слоя, а также уменьшение величины поперечных скоростей и, соответственно, снижение интенсивности сходящих вихрей.

После численного моделирования в вязкой жидкости были выполнены расчеты исходного профиля и профилей «Вариант 1» и «Вариант 6» в невязкой (идеальной) жидкости для углов атаки 5°, 7° и 10°. Результаты расчетов представлены на рис. 8 (см. вклейку).

Результаты численного моделирования в невязкой жидкости показали значительное уменьшение

подъемной силы у модернизированных профилей. Это объясняется тем, что угол атаки (относительно хорды профиля) у модернизированных профилей изменяется в меньшую сторону по сравнению с исходным профилем из-за наличия достраиваемой области (объема). Однако величина этого эффекта (снижения подъемной силы) при численном моделировании в вязкой жидкости меньше, чем при расчете в невязкой жидкости.

Эксперимент

Experiment

Для проведения эксперимента была спроектирована и создана установка для крепления профиля крыла в кавитационной трубе (рис. 9). На установку крепился обтекатель (крепление обтекателя расположено на внутренней части кавитационной трубы) с целью снижения сопротивления.

Рис. 10. Профили, изготовленные для эксперимента («Исходный» и «Вариант 1») Fig. 10. Tested profiles (initial and Variant 1)

Эксперимент проведен для исходного профиля и модернизированных профилей «Вариант 1» и «Вариант 6», на углах атаки 2,5°; 5°; 7,5°; 10°. Скорости при проведении эксперимента – от 3 до 7 м/с. Длина хорды – исходного профиля 0,2 м. Удлинение профиля – 0,725. Число Рейнольдса, используемое в численном моделировании ($\text{Re} \approx 1.10^6$), входило в диапазон исследуемых при проведении эксперимента.

Профили с различными формами достраиваемой выходящей кромки были изготовлены на 3D-принтере (рис. 10). При креплении профиля крыла в трубе на нижнюю его часть также устанавливалась пластина в форме диска, аналогичная представленной на рис. 9.

По результатам эксперимента построены зависимости подъемной силы и силы сопротивления на исследуемых скоростях и углах атаки для трех исследуемых профилей (рис. 11–12, см. вклейку). Стоит отметить, что графики на рис. 11–12 построены с учетом сил, действующих на установку без исследуемого объекта. Также на рис. 13 представлена зависимость числа кавитации σ от угла атаки α .

По результатам эксперимента можно сделать выволы. что v модернизированных профилей не наблюдается такого резкого снижения значений Rx и Rv, которое наблюдалось при расчете в идеальной жидкости. Напротив, при оценке качества профилей (Cy/Cx) на расчетном числе Рейнольдса $(\text{Re} \approx 1.10^6)$ модернизированные профили оказываются не хуже исходного. Наблюдаемое снижение подъемной силы у модернизированных профилей можно компенсировать небольшим увеличением угла атаки. Аналогичные результаты были получены при численном моделировании в вязкой жидкости. Кавитационная характеристика на рис. 13 показывает, что у модернизированных профилей число кавитации возрастает, но величина прироста незначительна и наблюдается в основном на больших углах атаки (больше 7°).

Заключение

Conclusion

Обобщая результаты, полученные по всем этапам, описанным выше, следует вывод о наличии эффективности описываемого подхода для уменьшения области отрыва турбулентного пограничного слоя с незначительным изменением гидродинамических характеристик. Применение настоящего подхода к модернизации формы лопастей низкооборотных

Рис. 13. Число кавитации для исследуемых профилей в зависимости от угла атаки

Fig. 13. Cavitation numbers of investigated profiles at different attack angles

малошумных гребных винтов может привести к заметному снижению уровней высокочастотного акустического излучения подводных объектов.

Список использованной литературы

- 1. Левковский Ю.Л. Шум гребных винтов. Санкт-Петербург : ЦНИИ им. акад. А.Н. Крылова, 2005. 184 с.
- Бушковский В.А. Оценка нестационарных сил на гребном винте при его работе в турбулентном набегающем потоке // Труды ЦНИИ им. акад. А.Н. Крылова. 2009. Вып. 49(333). С. 31–42.
- Мухин А.Б. Акустическая оптимизация геометрических элементов гребных винтов подводных лодок // Труды ЦНИИ им. акад. А.Н. Крылова. 2009. Вып. 47(331). С. 81–90.
- Левковский Ю.Л. Физическая природа и методы моделирования шума гребных винтов // Труды ЦНИИ им. акад. А.Н. Крылова. 2009. Вып. 47(331). С. 63–72.
- Багринцев В.В., Коваль Н.А., Маринич Н.В. Оптимизация геометрии гребного винта подруливающего устройства для снижения периодических сил // Труды Крыловского гос. науч. центра. 2019. Спец. вып. 2. С. 67–72. DOI: 10.24937/2542-2324-2019-2-S-I-67-72.
- Левковский Ю.Л., Чекалов С.П., Яковлева Ю.С. Идентификация шумов движителей подводных лодок по данным натурных акустических испытаний // Труды ЦНИИ им. акад. А.Н. Крылова. 2009. Вып. 47(331). С. 91–100.
- Маринич Н.В., Калюжный В.Г. Расчет отрывного обтекания элементов движителя // Труды Крыловского гос. науч. центра. 2013. Вып. 73(357). С. 41–50.
- Васильев А.В., Яковлев А.Ю. Расчетный метод оценки гидродинамических характеристик осевых насосов // Проблемы мореходных качеств судов, корабельной

гидромеханики и освоения шельфа: тезисы докладов науч.-техн. конф. «XL Крыловские чтения». Санкт-Петербург : ЦНИИ им. акад. А.Н. Крылова, 2001. С. 69–71.

- Мухина Л.А. Гидродинамический расчет гребного винта на персональном компьютере // Труды ЦНИИ им. акад. А.Н. Крылова. 1998. Вып. 7(291). С. 30–32.
- Boushkovsky V.A., Yakovlev A.Yu. Unsteady forces induced by ducted propellers // Lavrentiev Lectures: Proceedings of International Symposium on Ship Propulsion (SP 2001). Saint Petersburg : Saint Petersburg State Marine Technical Univ., 2001. P. 87–94.

References

- 1. *Yu. Levkovsky*. Propeller noise. St. Petersburg, Krylov Shipbuilding Research Institute, 2005, 182 [1] pp. (*in Russian*).
- 2. *V. Bushkovsky*. Assessment of unsteady forces on the propeller in turbulent flow // Transactions of Krylov State Research Centre, 2009, Issue 49(333), pp. 31–42 (*in Russian*).
- 3. *A. Mukhin.* Acoustic optimization of geometric elements for submarine propellers // Transactions of Krylov State Research Centre, 2009, Issue 47(331), pp. 81–90 (*in Russian*).
- Yu. Levkovsky. Propeller noise: physics and simulation methods // Transactions of Krylov State Research Institute, 2009, Issue 47(331), pp. 63–72 (in Russian).
- V. Bagrintsev, N. Marinich, A. Koval. Optimization of thruster propeller geometry to mitigate periodical forces // Transactions of Krylov State Research Centre, 2019, Special Issue No. 2, pp. 67–72 (*in Russian*).
- Yu. Levkovsky, S. Chekalov, Yu. Yakovleva. Submarine propeller identification as per full-scale acoustic trial data // Transactions of Krylov State Research Institute, 2009, Issue 47(331), pp. 91–100 (*in Russian*).
- 7. N. Marinich, V. Kalyuzhny. Calculation of flow separations for the propulsor elements. Transactions of Krylov

State Research Centre, 2013, Issue 73(357), pp. 41–50 (*in Russian*).

- A. Vasilyev, A. Yakovlev. Analytical assessment method for hydrodynamic performance of axial pumps // Ship seakeeping and hydromechanics. Theses of the messages delivered at the XLth Krylov Readings. St. Petersburg, 2001, pp. 69–71 (*in Russian*).
- 9. *L. Mukhina.* Hydrodynamic propeller calculation on personal computer // Transactions of Krylov State Research Centre, 1998, Issue 7(291), pp. 30–32 (*in Russian*).
- V.A. Boushkovsky, A.Yu. Yakovlev. Unsteady forces induced by ducted propellers // Lavrentiev Lectures: Proceedings of International Symposium on Ship Propulsion (SP 2001). Saint Petersburg : Saint Petersburg State Marine Technical Univ., 2001. P. 87–94.

Сведения об авторах

Багринцев Виктор Викторович, инженер ФГУП «Крыловский государственный научный центр». Адрес: 191015, Россия, Санкт-Петербург, Московское шоссе, д. 44. Тел.: +7 (812) 386-67-49. E-mail: bagrincev-victor@mail.ru.

Маринич Николай Владимирович, начальник лаборатории ФГУП «Крыловский государственный научный центр». Адрес: 191015, Россия, Санкт-Петербург, Московское шоссе, д. 44. Тел.: +7 (812) 386-67-49. E-mail: n_marinich@ksrc.ru. https://orcid.org/0000-0002-9290-3041.

About the authors

Viktor V. Bagrintsev, Engineer, Krylov State Research Centre. Address: 44, Moskovskoye sh., St. Petersburg, Russia, post code 196158. Tel.: +7 (812) 386-67-49. E-mail: bagrincev-victor@mail.ru.

Nikolay V. Marinich, Head of Laboratory, Krylov State Research Centre. Address: 44, Moskovskoye sh., St. Petersburg, Russia, post code 196158. Tel.: +7 (812) 386-67-49. E-mail: n marinich@ksrc.ru. https://orcid.org/0000-0002-9290-3041.

Поступила / Received: 10.02.22 Принята в печать / Ассерted: 09.03.22 © Багринцев В.В., Маринич Н.В., 2022