УДК 629.5.035.5 EDN: RCCGTU

А.Р. Филатов¹ 📵, А.М. Шевелев²

- ¹ ФГБОУ ВО «Балтийский государственный технический университет «Военмех» им. Д.Ф. Устинова», Санкт-Петербург, Россия
- ² ФГАОУ ВО «Санкт-Петербургский политехнический университет Петра Великого, Санкт-Петербург», Россия

СРАВНЕНИЕ ГИДРОДИНАМИЧЕСКИХ ХАРАКТЕРИСТИК ЛОПАСТНОГО И ПЕТЛЕВОГО ГРЕБНЫХ ВИНТОВ

Объект и цель научной работы. Объектами исследования являются судовые гребные винты (ГВ). Цель работы состоит в сопоставлении гидродинамических характеристик (ГДХ) лопастного и аналогичного ему петлевого ГВ в однородном потоке.

Материалы и методы. Нахождение ГДХ ГВ осуществлялось посредством численного моделирования динамики вязкой жидкости методом контрольных объемов. Решение стационарных уравнений Рейнольдса выполнялось с помощью полуэмпирической модели турбулентности k- ω SST в низкорейнольдсовой постановке в сочетании с моделью ламинарно-турбулентного перехода.

Основные результаты. Показано, что расчетный КПД петлевого ГВ на рабочих поступях выше, чем у лопастного, а разница между их максимальными значениями достигает 1,6 %. Рассмотрен вопрос о влиянии кавитации на петлевой ГВ.

Заключение. Разработанный петлевой ГВ по сравнению с лопастным имеет как больший КПД, так и больший упор, что говорит о возможной экономии при его использовании. Помимо этого, петлевой ГВ менее подвержен образованию кавитации.

Ключевые слова: петлевой гребной винт, лопастной гребной винт, численное моделирование, гидродинамические характеристики.

Авторы заявляют об отсутствии возможных конфликтов интересов.

UDC 629.5.035.5 EDN: RCCGTU

A.R. Filatov¹ D, A.M. Shevelev²

¹ Baltic State Technical University "Voenmeh" named after D.F. Ustinov, St. Petersburg, Russia

² St. Petersburg State Polytechical University, St. Petersburg, Russia

COMPARISON OF HYDRODYNAMIC PERFORMANCE OF BLADED AND LOOP PROPELLERS

Object and purpose of research. This paper discusses marine propellers. Its purpose is to compare hydrodynamic performance of conventional propeller and an equivalent toroidal propeller in uniform flow.

Materials and methods. Hydrodynamic characteristics of propeller were obtained through numerical simulation of viscous fluid as per FVM method. Steady Reynolds equations were solved as per semi-empirical turbulence model k- ω SST in low-Reynolds formulation, combined with the model of laminary-turbulent transition (LTT).

Main results. It is shown that design efficiency of toroidal propeller at operational advance ratios is higher than for the conventional one, and the difference between their peak values is as high as 1.6 %. Cavitation effects for toroidal propellers have also been discussed.

Conclusion. Toroidal propeller suggested by the authors offers both higher efficiency and higher thrust than conventional propellers so it could probably be more cost-efficient in operation. Besides, toroidal propeller is less prone to cavitation inception.

Keywords: toroidal propeller, conventional propeller, numerical simulation, hydrodynamic performance.

The authors declare no conflicts of interest.

Для цитирования: Филатов А.Р., Шевелев А.М. Сравнение гидродинамических характеристик лопастного и петлевого гребных винтов. Труды Крыловского государственного научного центра. 2024; 3(409): 66–70.

For citations: Filatov A.R., Shevelev A.M. Comparison of hydrodynamic performance of bladed and loop propellers. Transactions of the Krylov State Research Centre. 2024; 3(409): 66–70 (in Russian).

Введение

Introduction

Гребные винты (ГВ) являются наиболее распространенным типом движителей за счет развиваемого упора, компактности и легкости. В судостроении задачи повышения КПД пропульсивного комплекса и снижение его шума всегда актуальны, поскольку от их решения зависят как экономическая эффективность судна, так и комфорт эксплуатации.

Можно утверждать, что достигнут предел КПД лопастных ГВ [1, 2], так что даже применение параметрической оптимизации и оптимизации формы не дают его существенного увеличения [3].

Одним из путей решения проблемы повышения КПД ГВ представляется изменение топологии лопастей, а именно — применение петлевых ГВ. С середины 2000-х гг. предпринимались попытки математически описать и спроектировать петлевой ГВ для судов [1, 4, 5]. Коммерчески успешных результатов добилась компания Sharrow Marine, которая в 2017 г. представила свой петлевой ГВ [6, 7]. Анализ результатов работы петлевых ГВ этой фирмы позволяет сделать вывод о перспективности применения лопастей петлевой формы для пассажирских судов.

Целью настоящей работы является сопоставление Γ ДХ лопастного и аналогичного ему петлевого Γ В.

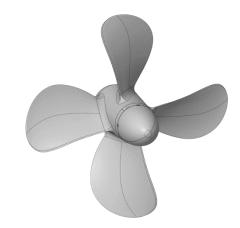
Для достижения поставленной цели решены следующие задачи:

- определение кривых действия традиционного лопастного ГВ в свободной воде;
- разработка петлевого ГВ с сохранением числа и диаметра лопастей, а также диаметра ступицы;
- определение кривых действия разработанного петлевого ГВ в свободной воде.

Материалы и методы

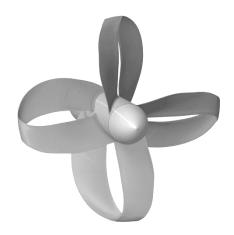
Materials and methods

В качестве исходного был выбран четырехлопастной гребной винт пассажирского судна, внешний вид которого показан на рис. 1, а основные параметры приведены в табл. 1.


Первым шагом в разработке петлевого ГВ стало создание 3D-модели петлевой лопасти, ограниченной диаметром ступицы и наружным диаметром лопастного ГВ. На втором шаге разработки петлевого ГВ с помощью сопряженного решателя (Adjoint Solver) выполнялась оптимизация формы петлевой лопасти в программе Ansys Fluent с целью увеличения КПД. Разработанный указанным спосо-

бом петлевой ΓB показан на рис. 2, а его параметры приведены в табл. 1.

Для нахождения ГДХ лопастного и разработанного петлевого ГВ также использовался пакет вычислительной гидродинамики Ansys Fluent.


Задачи решались в стационарной постановке с дискретизацией по пространству 2-го порядка. С учетом периодичности течения использовалась расчетная область, включающая в себя только одну лопасть ГВ. Использована модель турбулентности k- ω SST [8] совместно с моделью ламинарнотурбулентного перехода Ментера — Лэнгтри [9]. В расчетах принята плотность воды ρ = 998,2 кг/м³, динамическая вязкость μ = 1,003 Па/с.

На входной границе расчетной области была задана скорость потока, отношение турбулентной

Рис. 1. 3D-модель четырехлопастного гребного винта пассажирского судна

Fig. 1. 3D model of four-bladed conventional propeller for passenger vessel

Рис. 2. 3D-модель петлевого гребного винта **Fig. 2.** 3D model of toroidal propeller

Таблица 1. Основные параметры гребного винта

Table 1. Main parameters of the propeller

	Лопастной	Петлевой
Диаметр D , мм	900	900
Число лопастей Z	4	4
Средний шаг, мм	978	1600
Дисковое отношение A_e/A_0	0,53	0,57

вязкости и степень турбулентности. Последние две величины во всех расчетах имели одно и то же значение для корректного сравнения КПД лопастного и петлевого ГВ [10, 11]. На выходной границе назначалось условие свободного вытекания или статическое давление для нахождения зон возможной кавитации. На остальных внешних границах ставилось условие свободного проскальзывания, а на поверхностях ГВ — условие прилипания.

Для всех расчетов использовалась полиэдрическая сетка (рис. 3). Размерность задач нахождения ГДХ ГВ в среднем была равна 5 млн ячеек. В численной модели лопастного и петлевого ГВ при нахождении ГДХ для полного разрешения пограничного слоя [12] высота первых пристеночных ячеек принята равной соответственно $2,5\cdot10^{-6}$ м и $1,2\cdot10^{-6}$ м с 40 слоями в призматической области и коэффициентом роста 1,15. ГДХ ГВ сравнивались при одинаковом числе оборотов.

Результаты и обсуждение

Results and discussion

Расчетные и аналитические ГДХ лопастного ГВ показаны на рис. 4 (см. вклейку). Коэффициент

упора K_T , коэффициент момента K_Q , КПД η и J определяются по формулам:


$$K_T = \frac{T}{\rho n^2 D^4}, \ K_Q = \frac{Q}{\rho n^2 D^5}, \ \eta = \frac{T}{Q} \frac{v}{2\pi n}, \ J = \frac{v}{nD}, \ (1)$$

где T — упор ГВ; Q — крутящий момент на ГВ; v — скорость потока на входе в расчетную область; ρ — плотность воды; n — частота вращения ГВ.

Поскольку разница между аналитическим и численным расчетами лопастного ГВ (рис. 5, см. вклейку) не превосходит 5 % на рабочих поступях, в т.ч. в зоне максимального КПД при относительной поступи J=0,97, полученные результаты можно считать сходящимися. С ростом относительной поступи J погрешность расчетов увеличивается в связи с уменьшением упора и момента ГВ. Относительные разницы δK_T , δK_Q и $\delta \eta$ определяются по формулам:

$$\delta K_T = \frac{|K_T - K_T^*|}{K_T^*}, \ \delta K_Q = \frac{|K_Q - K_Q^*|}{K_Q^*}, \ \delta \eta = \frac{|\eta - \eta^*|}{\eta^*}, \ (2)$$

где K_T , K_Q , η — значения, полученные в результате численного моделирования; K_T^* , K_Q^* , η^* — значения, полученные в результате аналитического расчета.

Рис. 3. Поверхностная сетка в задачах расчета лопастного (*a*) и петлевого (*б*) гребных винтов

Fig. 3. Surface mesh in calculation of propellers: a) conventional; b) toroidal

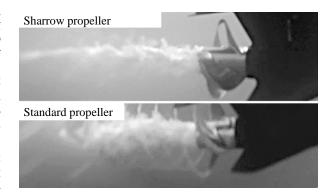
На рис. 6 (см. вклейку) показаны численные ГДХ петлевого и лопастного ГВ. Максимальный КПД петлевого ГВ достигает 72,3 % при J=1,3, а максимальный КПД лопастного ГВ достигает 70,7 %.

На рис. 7 (см. вклейку) показаны распределения безразмерной координаты y^+ , которая в расчетах ГДХ не превосходила 1, а на рис. 8 (см. вклейку) – распределение коэффициента давления по поверхностям лопастного и петлевого ГВ.

На рис. 9 (см. вклейку) показана выполненная с помощью *q*-критерия и раскрашенная амплитудой скорости визуализация вихревых структур, сходящих с лопастного и петлевого ГВ при условии равенства их упоров и *q*-критерия.

На рис. 10 (см. вклейку) показаны области возможной кавитации на засасывающих поверхностях лопастей ГВ при режиме работы на максимальном КПД и числе кавитации σ = 0,5. Зеленым цветом обозначены поверхности, на которых давление меньше давления насыщенных паров воды при температуре 15 °C. Скорость вращения лопастного ГВ составляла 850 об/мин, скорость вращения петлевого ГВ выбрана равной 687 об/мин исходя из условия равенства упоров обоих ГВ. Число кавитации σ определяется по следующей формуле:

$$\sigma = \frac{p - p_v}{(\rho/2)v^2},$$


где p — давление в месте расположения ГВ; p_y — давление насыщенных паров воды.

Sharrow Marine провела ходовые испытания судна как с традиционным лопастным ГВ, так и с петлевым, разработанным этой компанией. Кавитационные картины ГВ [13] сравнивались при одинаковой скорости судна и одинаковых диаметрах ГВ (рис. 11). Видно, что петлевой ГВ менее подвержен образованию кавитации, при этом принципиальное отличие картин заключается в отсутствии у петлевого ГВ концевых вихрей.

Заключение

Conclusion

Разработанный петлевой ГВ по сравнению с лопастным имеет и более высокий КПД, и больший упор, что говорит о возможной экономии при его использовании. Помимо этого, петлевой ГВ менее подвержен образованию кавитации. В последующих работах авторы рассмотрят проблему обеспечения прочности петлевого ГВ за счет как усиления слабых мест, так и подбора материалов. Отдельным важным вопросом является разработка технологии изготовления петлевых ГВ.

Рис. 11. Картины кавитации лопастного и петлевого гребных винтов

Fig. 11. Cavitation patterns of conventional and toroidal propeller

Список использованной литературы

- Месропян А.В., Шабельник Ю.А. К вопросу об эффективности рабочего процесса петлевидных гребных винтов // Омский научный вестник. Сер.: Авиационноракетное и энергетическое машиностроение. 2023. Т. 7, № 2. С. 15–21. DOI: 10.25206/2588-0373-2023-7-2-15-21.
- Месропян А.В., Шабельник Ю.А. О способах повышения эффективности водоходных движителей // Вестник Дагестанского государственного технического университета. Технические науки. 2021. Вып. 48, № 3. С. 39–51. DOI: 10.21822/2073-6185-2021-48-3-39-51.
- Лаврищева Л.С., Новоселов В.Н. Оптимизация формы модели гребного винта в однородном потоке // Труды Крыловского государственного научного центра. 2018. Спец. вып. 1. С. 75–83. DOI: 10.24937/2542-2324-2018-1-S-I-75-83.
- 4. *Богатырев М.Д.* Совершенствование конструкции гребного винта на судах лесосплавного флота: дис. ... канд. тех. наук. Йошкар-Ола: ПГТУ, 2006. 156 с.
- Куликова Е.А. Исследование эффективности петлевых гребных винтов с помощью программного комплекса flow simulation // Научные проблемы транспорта Сибири и Дальнего Востока. 2021. № 4. С. 41–44.
- Propeller: patent 9926058 United States / Sharrow G.C., Cherry H. № 15/605764; appl. 27.05.2017; publ. 21.09.2017. 66 p.
- 7. Sharrow Engineering Propeller // BoatTEST: [site]. [S. l.], 2019. URL: https://boattest.com/Sharrow-Engineering-Propeller/ (Accessed: 01.03.2024).
- 8. *Menter F.R.* Two equation eddy-viscosity turbulence models for engineering applications // AIAA Journal. 1994. Vol. 32. P. 1598–1605. DOI: 10.2514/3.12149.
- 9. Correlation-based transition model using local variables. Part 1: Model Formulation / F.R. Menter, R.B. Langtry, S.R. Likki [et al.] // Journal of Turbo-

- machinery. 2006. Vol. 128, № 3. P. 413–422. DOI: 10.1115/1.2184352.
- Таранов А.Е., Лобачев М.П. Определение гидродинамических характеристик моделей гребных винтов с учетом ламинарно-турбулентного перехода // Труды Крыловского государственного научного центра. 2015. Вып. 90(374). С. 47–54.
- Моделирование ламинарно-турбулентного перехода в задаче численного определения кривых действия гребного винта / Д.О. Панов, Е.М. Смирнов, А.Е. Таранов, М.П. Лобачев // Труды Крыловского государственного научного центра. 2013. Вып. 78(362). С. 29–42.
- CFD application for an icebreaker propeller design / A.E. Taranov, M.P. Lobachev, T.I. Saifullin, I.G. Frolova // Proceedings of the 5th International Symposium on Marine Propulsors (SMP'17). Espoo, 2017. Vol. 2. P. 398–403.
- 13. Sharrow propellerTM vs Standard stainless cavitation / Sharrow Marine // YouTtube : [site]. 2019. 11 Oct. URL: https://www.youtube.com/watch?v=X7pJqFgzXp4/ (Accessed: 01.03.2024).

References

- Mesropyan A.V., Shabelnik Yu.A. Efficiency of toroidal propellers // Scientific Bulletin of Omsk State University. Series "Aerospace and Power Engineering". 2023. Vol. 7, No. 2. P. 15–21. DOI: 10.25206/2588-0373-2023-7-2-15-21 (in Russian).
- Mesropyan A.V., Shabelnik Yu.A. On efficiency improvement of marine propellers // Herald of Dagestan State Technical University. Natural Sciences. 2021. Vol. 48(3). P. 39–51. DOI: 10.21822/2073-6185-2021-48-3-39-51 (in Russian).
- Lavrischeva L.S., Novoselov V.N. Shape optimization of propeller model in uniform flow // Transactions of Krylov State Research Centre. 2018. Special Issue No. 1. P. 75–83. DOI: 10.24937/2542-2324-2018-1-S-I-75-83 (in Russian).
- Bogatyrev M.D. Propeller design improvement for timberrafting fleet: Cand. Sci. thesis / Volga State University of Technology. Yoshkar-Ola, 2006. 156 p. (in Russian).
- Kulikova Ye.A. Efficiency assessment of toroidal propellers in Flow Simulation software package // Nauchnye problemy transporta Sibiri i Dalnego Vostoka (Research Challenges in Transport of Siberia and Russian Far East). 2021. Vol. 4. P. 41–44 (in Russian).
- Propeller: patent 9926058 United States / Sharrow G.C., Cherry H. № 15/605764; appl. 27.05.2017; publ. 21.09.2017. 66 p.
- Sharrow Engineering Propeller // BoatTEST: [site].
 [S. l.], 2019. URL: https://boattest.com/Sharrow-Engineering-Propeller/ (Accessed: 01.03.2024).
- Menter F.R. Two equation eddy-viscosity turbulence models for engineering applications // AIAA Journal. 1994. Vol. 32. P. 1598–1605. DOI: 10.2514/3.12149.

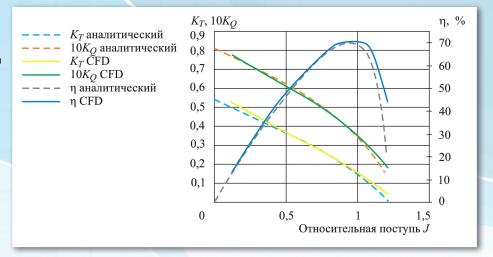
- Correlation-based transition model using local variables. Part 1: Model Formulation / F.R. Menter, R.B. Langtry, S.R. Likki [et al.] // Journal of Turbomachinery. 2006. Vol. 128, No. 3. P. 413–422. DOI: 10.1115/1.2184352.
- Taranov A.E., Lobachev M.P. Hydrodynamic calculation of propeller model taking laminary-turbulent transition into account // Transactions of Krylov State Research Centre. 2015. Vol. 90(374). P. 47–54 (in Russian).
- Simulation of laminar-turbulent transition in numerical determination of propeller performance curves / D.O. Panov, E.M. Smirnov, A.E. Taranov, M.P. Lobachev // Transactions of the Krylov State Research Centre. 2013. Vol. 78(362). P. 29–42 (in Russian).
- CFD application for an icebreaker propeller design / A.E. Taranov, M.P. Lobachev, T.I. Saifullin, I.G. Frolova // Proceedings of the 5th International Symposium on Marine Propulsors (SMP'17). Espoo, 2017. Vol. 2. P. 398–403.
- 13. Sharrow propellerTM vs Standard stainless cavitation / Sharrow Marine // YouTube : [site]. 2019. 11 Oct. URL: https://www.youtube.com/watch?v=X7pJqFgzXp4/ (Accessed: 01.03.2024).

Сведения об авторах

Филатов Антон Романович, к.т.н., доцент кафедры высшей математики ФГБОУ ВО «Балтийский государственный технический университет «Военмех» им. Д.Ф. Устинова». Адрес: 190005, Россия, Санкт-Петербург, 1-я Красноармейская ул., д. 1. E-mail: filatov_ar@voenmeh. https://orcid.org/0000-0001-7352-3003.

Шевелев Антон Михайлович, студент бакалавриата Института машиностроения, материалов и транспорта ФГАОУ ВО «Санкт-Петербургский политехнический университет Петра Великого». Адрес: 195251, Россия, Санкт-Петербург, Политехническая ул., д. 29. E-mail: shevelev.am@edu.spbstu.ru.

About the authors


Anton R. Filatov, Cand. Sci. (Eng.), Associate Professor of the Department of Higher Mathematics, Baltic State Technical University "Voenmeh", named after D.F. Ustinov. Address: 1, 1st Krasnoarmeyskaya st., St. Petersburg, Russia, post code 190005. E-mail: filatov_ar@voenmeh.ru. https://orcid.org/0000-0001-7352-3003.

Anton M. Shevelev, Undergraduate Student, Institute of Machinery, Materials and Transport of Peter the Great St. Petersburg State Polytechnical University. Address: 29, Politekhnicheskaya st., St. Petersburg, Russia, post code 195251. E-mail: shevelev.am@edu.spbstu.ru.

Поступила / Received: 04.04.24 Принята в печать / Accepted: 22.08.24 © Филатов А.Р., Шевелев А.М., 2024

Рис. 4. Аналитические и расчетные гидродинамические характеристики лопастного гребного винта

Fig. 4. Analytical and calculated hydrodynamic parameters of conventional propeller

Рис. 5. Погрешность численных гидродинамических характеристик лопастного гребного винта

Fig. 5. Error in numerical hydrodynamic parameters of conventional propeller

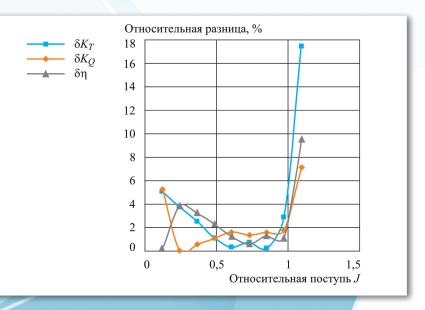
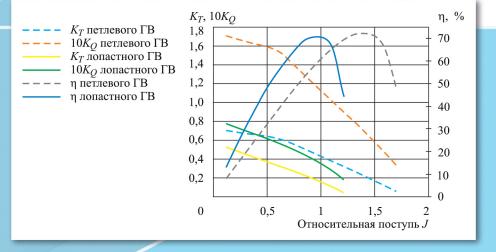
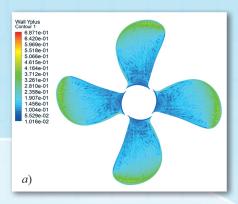
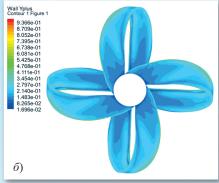
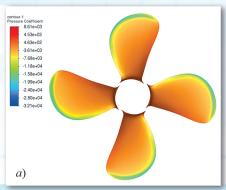





Рис. 6. Расчетные гидродинамические характеристики петлевого и лопастного гребных винтов

Fig. 6. Calculated hydrodynamic parameters of conventional and toroidal propeller



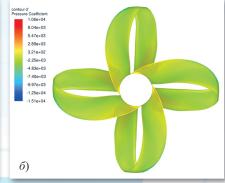


Рис. 7. Безразмерная координата y+ на поверхности лопастного (a) и петлевого (6) гребных винтов

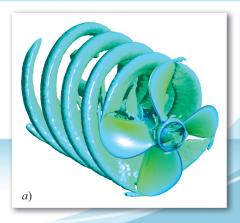
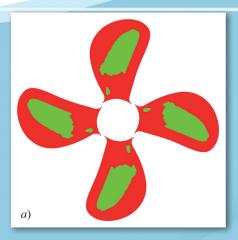

Fig. 7. Non-dimensional coordinate y+ on the surface of conventional (a) and toroidal (b) propeller

Рис. 8. Коэффициент давления на поверхности лопастного (*a*) и петлевого (*б*) гребных винтов


Fig. 8. Pressure coefficient on the surface of conventional (a) and toroidal (b) propeller

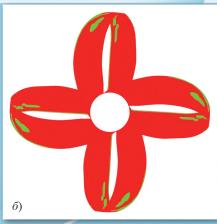


Рис. 9. Вихревые структуры, сходящие с лопастного (a) и петлевого (b) гребных винтов

Fig. 9. Vortex shedding from conventional (a) and toroidal (b) propeller

Рис. 10. Области возможной кавитации лопастного (a) и петлевого (b) гребных винтов

Fig. 10. Possible cavitation areas on conventional (*a*) and toroidal (*b*) propeller