DOI: 10.24937/2542-2324-2023-2-404-58-67 УДК 532.51:629.5.035.5+629.5.018.71

В.М. Котлович

ФГУП «Крыловский государственный научный центр», Санкт-Петербург, Россия

ПРИЧИНЫ РАЗЛИЧИЙ МЕЖДУ КОЭФФИЦИЕНТАМИ УПОРА ВИНТА ПРИ РАБОТЕ ЗА КОРПУСОМ СУДНА И В СВОБОДНОЙ ВОДЕ НА ШВАРТОВЫХ

Объект и цель научной работы. Объект – результаты испытаний моделей самоходных судов на швартовном режиме. Цель – анализ гидродинамических причин расхождения коэффициентов упора гребных винтов при работе в свободной воде и за корпусом судна на швартовых.

Материалы и методы. Анализ, выполненный на основе теории идеального движителя, показал, что скорость ΔV потока, натекающего на винт при его работе за корпусом судна, на швартовном режиме создается системой стоков, обеспечивающих прилегание течения к поверхности корпуса, конечна по величине и является эффективным попутным потоком. Скорость этого потока одинакова для изолированного винта и при его работе за корпусом.

Коэффициент упора изолированного гребного винта при поступи $\lambda_P = \frac{\Delta V}{nD} < 0$ принадлежит т.н. режиму встречной

струи его реверса. Показано, что отклонение коэффициента упора при самоходных испытаниях от его же значения для винта в свободной воде связано именно с особенностями изменения упора движителя на прилегающем к швартовым участке этого режима. Определены границы зоны влияния режима встречной струи на кривую действия гребного винта при самоходных испытаниях.

Сделаны практические выводы и рекомендации, вытекающие из полученных данных.

Основные результаты. Выяснена причина расхождения результатов самоходных испытаний относительно изолированного винта на швартовном режиме и вблизи него. Из вытекающих результатов даны рекомендации по уточнению методик испытаний гребных винтов и самоходных моделей судов.

Заключение. Материалы статьи могут быть полезны для понимания процессов неоднозначности результатов испытаний самоходных моделей судов.

Ключевые слова: методика самоходных испытаний модели, попутный поток, швартовный режим. *Автор заявляет об отсутствии возможных конфликтов интересов.*

DOI: 10.24937/2542-2324-2023-2-404-58-67 UDC 532.51:629.5.035.5+629.5.018.71

V.M. Kotlovich

Krylov State Research Centre, St. Petersburg, Russia

SOURCES OF DIFFERENCES BETWEEN PROPELLER THRUST COEFFICIENTS IN BOLLARD-PULL CONDITIONS BEHIND SHIP HULL AND IN OPEN WATER

Object and purpose of research. The object of research is the results of self-propelled ship tests in bollard-pull conditions. The purpose is to analyse the hydrodynamic sources giving rise to differences between propeller thrust coefficient in open-water and behind-hull conditions.

Materials and methods. Analysis based on the ideal propeller theory shows that the velocity ΔV of inflow on propeller operating behind ship hull in bollard-pull conditions caused by a system of sinks, ensuring flow attachment to hull surface, has a finite value and is actually the effective wake. The wake velocity for an open-water propeller is equal to the behind hull velocity.

Для цитирования: Котлович В.М. Причины различий между коэффициентами упора винта при работе за корпусом судна и в свободной воде на швартовых. Труды Крыловского государственного научного центра. 2023; 2(404): 58–67.

For citations: Kotlovich V.M. Sources of differences between propeller thrust coefficients in bollard-pull conditions behind ship hull and in open water. Transactions of the Krylov State Research Centre. 2023; 2(404): 58–67 (in Russian).

The open-water propeller thrust coefficient at advance ratio $\lambda_P = \frac{\Delta V}{nD} < 0$ is due to the opposed jet of its reversal. It is shown

that the thrust coefficient deviations at self-propelled tests in open-water has to do with the specifics of propeller thrust variations in the operating area adjacent to bollard-pull conditions. Boundaries of the operating area where the opposed jet affects the propeller curve at self-propelled tests are defined. Practical conclusions and recommendations are given following from the obtained data.

Main results. The source of discrepancies between self-propelled test results for open-water propeller in bollard pull conditions and close operating area has been found. Recommendations are given on updating the test procedures for propeller and self-propelled model tests.

Conclusion. The paper is expected to be useful for understanding the ambiguity of self-propelled test results.

Keywords: self-propeller model test procedure, wake, bollard pull conditions.

The author declares no conflicts of interest.

Основные обозначения

Nomenclature

- *D* = 2*R* и *n* соответственно диаметр (радиус) и частота вращения винта;
- *H_T/D* и *H_{TB}/D* поступи нулевого упора винта соответственно в свободной воде и за корпусом;
- V и V_P соответственно скорость невозмущенного потока на бесконечности (хода судна) и направленная вдоль оси винта проекция скорости внешнего потока, натекающего на гребной винт;

$$J = \frac{V}{nD}$$
 и $J_P = \frac{V_P}{nD}$ – соответственно кажущаяся

поступь винта за корпусом и относительная поступь винта в свободной воде;

- *T*, *T_B* и *T_E* соответственно упор винта в свободной воде и за корпусом, полезная тяга;
- Q и Q_B соответственно момент винта в свободной воде и за корпусом;

$$K_T(J_P) = \frac{T}{\rho n^2 D^4}$$
 и $K_{TB}(J) = \frac{T_B}{\rho n^2 D^4}$ – коэффици-

енты упора винта соответственно в свободной воде и за корпусом;

$$K_Q(J_P) = \frac{Q}{\rho n^2 D^5}$$
 и $K_{QB}(J) = \frac{Q_B}{\rho n^2 D^5}$ – коэффи-

циенты момента винта соответственно в свободной воде и за корпусом;

 $K_E(J) = \frac{T_E}{\rho n^2 D^4}$ – коэффициент полезной тяги винта.

Остальные обозначения раскрываются по ходу изложения текста статьи.

Введение

Introduction

Для целей проектирования и расчета гребного винта (ГВ) вопросы его взаимодействия с корпусом судна достаточно полно разработаны в научнотехнической и учебной литературе [1–2]. В основном они касаются обычных судов. Однако для некоторых типов судов и систем стабилизации морских сооружений рабочие режимы в ряде случаев близки к швартовному: это буксиры, ледоколы, промысловые суда, плавучие нефтяные платформы, глубоководные аппараты и др.

Гребной винт и корпус судна вместе представляют собой единый гидродинамический комплекс. Как правило, коэффициенты упора на швартовых для изолированного винта и при его работе за корпусом судна не совпадают друг с другом, что отражается на всем ходе кривых действия винта за корпусом. Это показано на рис. 1, где приведены кривые коэффициентов упора работающего гребного винта: как конкретного ГВ в свободной воде $K_T(J_P)$, так и ГВ за корпусом судна – три варианта возможных корпусов $K_{TB} \pm (J)^1$. Некоторым искривлением кривых действия реальных ГВ при обоих условиях в данном случае можно пренебречь.

Предположение, что на швартовых коэффициенты упоров изолированного винта и при его рабо-

Рис. 1. Схема кривых коэффициентов упора винта в свободной воде и за корпусом

Fig. 1. Representation of propeller thrust coefficient curves in open water and behind hull

те за корпусом должны совпадать друг с другом, на практике редко оправдывается. Согласно экспериментам коэффициент упора за корпусом на швартовых либо выше, либо ниже, чем уровень $K_T(0)$, что находит отражение на всем ходе результатов самоходных испытаний.

Величина $\Delta K_+ = K_{TB+}(0) - K_T(0) > 0$, и в диапазоне, где $K_{TB+}(J) > K_T(0)$, для определения попутного потока обычным способом невозможно найти значение или поступь поступи J_P , соответствующей кажущейся поступи J. В то же время разность $\Delta K_- = K_{TB-}(0) - K_T(0) < 0$ и кривые $K_{TB-}(J)$ и $K_T(J_P)$ взаимно пересекаются, и при $J < J_-$ попутный поток, согласно обычному способу его определения, становится отрицательным, что физически непонятно.

В [3] предложен оригинальный метод определения расчетных значений параметров взаимодействия моделей гребного винта и корпуса судна вблизи швартовного режима. Однако в работе нет указаний на причины несовпадения коэффициентов упора изолированного винта и при его работе в присутствии корпуса. Анализ гидродинамических причин данного явления – цель настоящей статьи.

Скорость потока, набегающего на винт на швартовых за корпусом

Sources of ambiguity for propeller thrust coefficients behind hull

Взаимодействие гребного винта и корпуса судна характеризуется в основном коэффициентами засасывания *t* и попутного потока *w*. Коэффициенты взаимодействия зависят от обводов и обтекания судна, расположения и диаметра винта, а также от его нагрузки. Физически сила засасывания создается разрежениями на поверхности кормы при работе гребного винта. В общем случае они имеют потенциальную и вязкостную составляющие:

$$t = t_p + t_f \operatorname{I\!I} w = w_p + w_f. \tag{1}$$

Сила засасывания равна разности упора винта при работе за корпусом T_B и его полезной тяги T_E . Она характеризуется коэффициентом засасывания:

$$t(J) = 1 - \frac{T_E}{T_B} = 1 - \frac{K_E(J)}{K_{TB}(J)}.$$
 (2)

Вязкостная составляющая засасывания очень мала, и ею обычно пренебрегают ($t_f = 0$). Применительно к швартовному режиму $t(0) = t_0$. Для гребного винта в свободной воде скорость V_p внешнего потока, натекающего на винт (т.е. не учитывающая скоростей, вызванных непосредственно винтом), и скорость V впереди на бесконечности равны друг другу. При работе же винта за корпусом судна $V_p \neq V$, где V_p – лишь продольная компонента потока, натекающего на гребной винт, а V – скорость хода судна. Они различаются на скорость попутного потока $\Delta V = V - V_p$, который направлен противоположно V. В безразмерном виде величина ΔV характеризуется коэффициентом эффективного (расчетного) попутного потока:

$$w(J) = \frac{\Delta V}{V} = 1 - \frac{J_P}{J}$$
 при $(J) = K_T(J_P).$ (3)

Одной из его составных частей является коэффициент номинального попутного потока $w_{\rm H}$. Он создается за счет скорости хода V и реализуется в месте расположения гребного винта при отсутствии движителя $w_{\rm H} = 1 - \frac{H_T / D}{H_{TB} / D}$ или при пре-

дельно малой нагрузке. Его также можно определить на основе измерения поля скоростей на модели судна в диске движителя.

Вторая часть – поправка Δw , учитывающая изменение $w_{\rm H}$, обусловленное работой винта ($T_B \neq 0$). Коэффициент эффективного попутного потока $w = w_{\rm H} + \Delta w$. В диапазоне слабых нагрузок винта поправка $\Delta w < 0$, и поэтому $w < w_{\rm H}$ за счет снижения в последнем и вязкостной, и потенциальной составляющих.

В математической модели течения поправка Δw создается, во-первых, за счет изменения номинального попутного потока (и вязкостной $w_{\rm H/r}$, и потенциальной $w_{\rm H/r}$ составляющих), а во-вторых, за счет продольных скоростей от индукции системы дополнительных стоков, распределенных на поверхности кормовой оконечности судна, которая компенсирует нормальные к корпусу составляющие скоростей, вызванных непосредственно винтом.

Следует заметить, что для выполнения условия непроницаемости корпуса эти стоки должны уравновешиваться дополнительной системой источников. В случае осесимметричных обводов кормы такие источники располагаются в пределах ступицы винта, которая рассматривается как продолжение корпуса. Эти источники в диске винта создают лишь радиальные скорости, не меняя осевую составляющую J_P , а на поверхности кормовой оконечности немного притормаживают течение.

Обычно на швартовном режиме (V = J = 0) коэффициент $w(0) = \pm \infty$. Это имеет место даже в случае, когда $K_T(0) = K_{TB}(0)$, и коэффициент попутного потока после раскрытия неопределенностей может (dK - (dI) - dI)

быть обозначен как $w(0) = 1 - \frac{(dK_{TB} / dJ)_{J=0}}{(dK_T / dJ_P)_{J_P=0}}.$

В практике расчетов ходкости судна и проектирования гребных винтов коэффициент попутного потока w обычно определяют на основе сопоставления результатов испытаний модели ГВ в свободной воде и за корпусом модели судна (самоходные испытания). Для этого используется гипотеза эквивалентности условий работы гребного винта, предполагающая, что в безразмерном виде при указанных условиях будут одинаковы коэффициенты упоров ГВ $K_T(J_P) = K_{TB}(J)$ или его моментов $K_Q(J_P) = K_{QB}(J)$ в свободной воде и за корпусом. Это позволяет найти и относительную Ј_Р, и кажущуюся Ј поступь винта, необходимые для подстановки в формулу (3). Использование равенства коэффициентов упора соответствует методу Фруда, который чаще употребляется в России (и в данной статье), а при использовании равенства моментов методу Тейлора, применяемому в США.

В диапазоне рабочих нагрузок гребных винтов эти методы дают близкие результаты. Небольшое их различие учитывается введением в расчет параметров взаимодействия винта и корпуса соответствующих «коэффициентов неоднородности»,

близких к единице $i(J) = \frac{i_T}{i_Q} \approx 1 \pm (0,01 \div 0,04).$

Вопросы взаимодействия корпуса и идеального движителя, эквивалентного реальному гребному винту и отражающего его основные свойства, детально изучены и подробно представлены в [2]. Анализ, выполнявшийся на основе методов теории потенциала и основных законов механики, показал, что:

 при любой нагрузке, характеризуемой вызванной скоростью u₂ в струе движителя далеко вниз по потоку, скорость натекающего на винт потока, отнесенная к V, равна:

$$\frac{V_P}{V} = (1 - w_{\rm H}) + \frac{u_2}{2V} \left[(1 - t_0) - \frac{(1 - w_{\rm H}f) + \frac{u_2}{2V}}{(1 - w_{\rm H}) + \frac{u_2}{2V}(1 - t_0)} \right]; (4)$$

 упор идеального движителя при работе и в свободной воде, и за корпусом равен:

$$T = T_B = \rho \frac{\pi}{4} D^2 u_2 \left(V + \frac{u_2}{2} \right).$$
 (5)

В общем случае отношение u_2/V скорости потока в струе гребного винта (u_2) к скорости хода комплекса (V) изменяется от бесконечности (∞) на швартовых до нуля при поступи нулевого упора винта. Вблизи швартовых скорость $V \rightarrow 0$ и оказывается много меньше, чем средняя скорость в струе $(V << u_2)$.

Анализ показывает, что дробь в квадратных

скобках выражения (4): $F(J) = \frac{(1 - w_{\rm Hf}) + \frac{u_2}{2V}}{(1 - w_{\rm H}) + \frac{u_2}{2V}(1 - t_0)}, -$

изменяется от $F(0) = \frac{\infty}{\infty} = 1$ на швартовых до

 $F(H_{TB} / D) = \frac{1 - w_{\rm Hf}}{1 - w_{\rm H}} > 1$ при поступи нулевого упо-

ра винта за корпусом. Линейно аппроксимируем функцию $F(J) \approx 1 + kJ$, где, учитывая второе из соотношений (1), $k = \frac{w_{Hp}}{(1 - w_{H})H_{TB} / D}$.

Поправка kJ – малая величина: например, при $w_{\rm H} \cong 0,25$ и $w_{\rm Hp} \approx 0,05$ ее максимальная величина (при $J = H_{TB}/D$) составит всего 0,07. Формула (4) примет вид:

$$\frac{V_P}{V} = (1 - w_{\rm H}) - \frac{u_2}{2V}(t_0 + kJ).$$
(6)

Умножив выражение (6) на V и разделив на *nD*, получаем в безразмерной форме:

$$J_P = \frac{V_P}{nD} = J(1 - w_{\rm H}) - \frac{J_u}{2}(t_0 + kJ), \tag{7}$$

где $J_u = \frac{u_2}{nD}$ – своеобразная поступь.

Упор винта (5) также можно представить в безразмерном виде:

$$K_{TB}(J) = \frac{T_B}{\rho n^2 D^4} = \frac{\pi}{4} \frac{J_u^2}{2} \left(2\frac{J}{J_u} + 1 \right).$$
(8)

Формулы (4–5) или (7–8) составляют систему двух нелинейных уравнений, решение которой позволяет определить те или иные два параметра, выбранные в качестве искомых. Так, при самоходных испытаниях на швартовых известны J = 0 и коэффициент упора $K_{TB}(0)$, а искомыми являются величины J_u и J_p . Тогда в уравнении (8) выражение

в скобках равно 1, поскольку первое слагаемое в них равно нулю. В этом случае из него следует, что

$$J_{u} = 2\sqrt{\frac{K_{TB}(0)}{\pi/2}}.$$
 (9)

В уравнении (7) первое слагаемое при J = 0 принимает вид:

$$J(1 - w_{\rm H}) = -Jw_{\rm H} = -\frac{V}{nD} \frac{H_{TB} / D - H_T / D}{V} = -w_{\rm H}^*.$$
 (10)

В новой форме коэффициент номинального попутного потока $w_{\rm H}^*$, который подробнее рассмотрен в главе «Рекомендации по уточнению методик испытаний самоходных моделей судов и винтов в свободной воде», для каждого комплекса «винт – корпус» постоянен и является аддитивным, независимым от работы гребного винта элементом выражения (7). Его величина была рассчитана в широком диапазоне $H_{TB}/D - H_T/D = 0$; 0,1; 0,2; 0,3 и 0,4 для характерных скоростей $15 \times 0,15 < nD < 25 \times 0,25$ и составила $0 < w_{\rm H}^* < 0,45$.

Подставляя в (7) выражение (9) и учитывая, что при швартовном режиме работы винта kJ = 0, окончательно получаем:

$$J_{P0} = -w_{\rm H}^* - t_0 \sqrt{\frac{K_{TB}(0)}{\pi/2}} < 0, \tag{11}$$

где на швартовых (J = 0) поступь изолированного винта обозначена как $J_P = J_{P0}$.

Зависимость относительной поступи $J_{P0}(t_0, w_{\rm H}^*, K_{TB}(0))$ для швартовного режима при работе винта за корпусом показана на рис. 2.

Такая форма представления результатов расчета поступи J_{P0} на швартовых оправдана упоминавшимся выше аддитивным характером $w_{\rm H}^*$. Пределы изменения J_{P0} : $J_{P0} \approx -0.02$ при малых значениях

Рис. 2. Зависимость $J_{P0} - W_{H}^{*}$ от t_{0} и K_{TB} **Fig. 2.** $J_{P0} - W_{H}^{*}$ versus t_{0} and K_{TB}

аргументов ($w_{\rm H}^* = 0$, что нереально, и $t_0 = 0,02$), $J_{P0} \approx -0.025$ при $w_{\rm H}^* = 0.2$ и даже $J_{P0} \approx -0.045$ при $w_{\rm H}^* = 0.4$ (что, видимо, уже трудно считать близкой к швартовному режиму).

На швартовых скорость эффективного попутного потока $\Delta V = V - V_p = -V_p$, т.к. V = 0. Ее отношение, отнесенное к *nD* (а не к скорости судна *V*!) в безразмерном виде составляет:

$$w^{*}(0) = \frac{\Delta V}{nD} = -J_{P0} = w_{\rm H}^{*} + t_0 \sqrt{\frac{K_{TB}(0)}{\pi/2}}.$$
 (12)

Как видно, на швартовых скорость ΔV конечна. Второе слагаемое (12) – поправка $\Delta w^* = t_0 \sqrt{\frac{K_{TB}(0)}{\pi/2}}$. Она имеет чисто потенциальный характер, т.к. на этом режиме протяженность, а следовательно, и толщина пограничного слоя на корпусе, очень мала и может охватывать лишь самые корневые части лопастей винта; вязкостной

составляющей в $\Delta w_{\rm H}^*$ вполне можно пренебречь. Рассмотрим другой вопрос: до какой кажущейся поступи винта за корпусом J_S на величине коэффициента упора $K_{TB}(0) \ge K_{TB}(J_S)$ перестает сказываться влияние отрицательных значений J_{P0} на швартовых. Очевидно, что в этом случае относительная поступь винта в свободной воде должна быть равной нулю. Тогда в системе уравнений (7) и (8) известными являются $J_P = 0$ и, хотя и условно, $K_{TB}(J_0)$, а искомыми J_S и J_u . Таким образом, система принимает вид:

$$J_{s}(1-w_{\rm H}) - \frac{J_{u}}{2}(t_{0} + kJ_{s}) = 0;$$
(13)

$$K_{TB}(J_0) = \frac{\pi}{4} \frac{J_u^2}{2} \left(2\frac{J_s}{J_u} + 1 \right),$$
(14)

где учтено, что, поправка kJ_S может быть соизмерима с t_0 .

Для приближенного решения этой системы примем во внимание, что рассматриваемая область находится вблизи швартовного режима, в которой

$$2\frac{J_s}{J_u} \ll 1$$
. С учетом этого замечания из (14), прене-

брегая в скобках первым слагаемым, после разрешения уравнения относительно J_u получаем практически то же выражение, что и (9), но содержащее $K_{TB}(J_S)$ вместо $K_{TB}(0)$:

$$J_u = 2\sqrt{\frac{K_{TB}(J_s)}{\pi/2}}.$$
(15)

Подставляя в уравнение (13) значение J_u по (15), имеем:

$$J_{s} = \frac{t_{0} + kJ_{s}}{1 - w_{\rm H}} \sqrt{\frac{K_{TB}(J_{s})}{\pi/2}}.$$
 (16)

Преобразуем выражение (16):

- возведем правую и левую части этого решения в квадрат;
- вблизи швартовых приближенно примем линейную аппроксимацию коэффициента упора винта K_{TB} (J) и при J = J_S получим

$$K_{TB}(J_s) = K_{TB}(0) (1 - qJ_s),$$
 где $q \approx \frac{1}{H_{TB}/D};$

- обозначим $g = \frac{2K_{TB}(0)}{\pi(1-w_{H})^{2}} = \text{const};$
- перегруппируем члены полученного равенства согласно степени *J_S*.

Тогда выражение (16) приводится к алгебраическому уравнению третьей степени:

$$aJ_s^3 + bJ_s^2 + cJ_s + d = 0, (17)$$

где $a = -k^2 qg; \ b = (k^2 g - 2kqgt_0 - 1); \ c = (2gkt_0 - qgt_0^2);$ $d = gt_0^2.$

Оно решается аналитически по методу Кардана, либо путем применения замены переменных Виета, либо по тригонометрическому методу Виета [5]. Дискриминант этого уравнения равен:

$$\Delta = -4b^3d + b^2c^2 - 4ac^3 + 18abcd - 27a^2d^2.$$
(18)

Если $\Delta > 0$, то все три корня уравнения J_{S1} , J_{S2} и J_{S3} вещественны. Если же $\Delta < 0$, вещественен лишь один корень, а остальные два комплексные. Когда $\Delta = 0$, все корни вещественны, но два из них совпадают друг с другом. Принимаются в расчет лишь вещественные корни уравнения, лежащие в пределах $0 < J_{si} < H_{TB}/D$. Если таких корней несколько, то принимается тот из них, который находится по возможности ближе к J = 0.

Уравнение (16) приближенно можно решить численно методом последовательных приближений. Для этого в n-1 приближении положим $t_0 + kJ_{s n-1} = z_{n-1} = \text{const.}$

Тогда:

$$J_{sn} = \frac{z_{n-1}}{1 - w_{\rm H}} \sqrt{\frac{K_{TB}(J_{sn})}{\pi/2}},$$

и после возведения левой и правой частей в квадрат получим

$$J_{sn}^{2} = \frac{2K_{TB}(0)}{\pi} \left(\frac{z_{n-1}}{1-w_{\rm H}}\right)^{2} (1-qJ_{sn}).$$

Обозначим

$$L_{n-1} = \frac{2K_{TB}(0)}{\pi} \left(\frac{z_{n-1}}{1 - w_{\rm H}}\right)^2.$$

После этого квадратное уравнение принимает вид $J_{sn}^2 + L_{n-1} q J_{sn} - L_{n-1} = 0$. Его корни легко определяются, и учитывая лишь положительный из них, находим

$$J_{sn} = \frac{L_{n-1}q}{2} \left[\sqrt{1 + \frac{4}{L_{n-1}q^2}} - 1 \right] > 0.$$
(19)

В начальном приближении можно принять $z_0 \approx 2t_0$. Процесс итераций сходится.

Причины неоднозначности коэффициента упора винта за корпусом

Reasons for ambiguity in propeller thrust coefficients for behind-hull condition

Для точки кривой действия винта в присутствии корпуса судна кажущейся поступи на швартовах J = 0 сходственной точкой того же винта в свободной воде является точка с поступью $J_{P0} < 0$ (11).

У этих точек при одинаковой частоте вращения винта n = const одинаковы также и скорости ΔV набегающих на винт потоков. Эти точки найдены без использования приведенной выше формулировки гипотезы эквивалентности. Применительно к данному случаю эту гипотезу можно изложить иначе: если у винта в свободной воде и в присутствии корпуса обороты и скорости натекающего на винт потока одинаковы, то их коэффициенты упоров также должны быть равны друг другу, т.е. $K_T(J_{P0}) = K_{TB\pm}(0)$, что ранее предполагалось.

В отличие от $J \ge 0$ отрицательное значение относительной поступи $J_{P0} < 0$ принадлежит участку действия винта в свободной воде близкому к швартовым, но уже к другому режиму работы ГВ (процессу его контрреверса) – обтеканию в режиме встречной струи. Он относится к ситуации, когда судно еще продолжает движение задним ходом, а винт уже работает в направлении переднего хода, активно погашая движение судна по инерции.

В режиме встречной струи вблизи швартовых струя гребного винта противоположна скорости движения судна и, огибая расположенный перед ГВ корпус, сталкивается с внешним потоком далеко от судна, почти на бесконечности. Скорость в струе много больше скорости хода судна по инерции, так что обтекание лопастей оказывается практически таким, как у изолированного винта в тех же условиях.

Реверсивные характеристики изолированного винта были изучены С.Я. Миниовичем [2], и под его руководством в опытовом бассейне выполнены систематические опыты. При переходе через швартовный режим скорость V, проходя через ноль, меняет свое направление (знак). Опыты показали, что при переходе от швартовых к режиму встречной струи, по мере уменьшения J_{P0} , коэффициент упора изолированного винта, как правило, сначала продолжает возрастать, аналогично кривой действия на переднем ходу, достигает максимума, а затем, снижаясь, становится отрицательным. Это снижение упора обусловлено уменьшением оборотов винта (но, не их знака!) и развитием отрывных явлений обтекания его лопастей.

Для винтов, отличающихся друг от друга по геометрии (в основном, по шаговому и дисковому отношениям), описанный процесс реализуется по-разному. Например, увеличение шага сопровождается смещением указанного максимума ближе к швартовному режиму и уменьшением его возвышения относительно коэффициента упора $K_T(0)$ изолированного винта.

Приближенно, согласно [4], изменение шагового отношения H_T/D от 0,6 до 1,6 сопровождается смещением абсциссы (поступи) J_M максимума с примерно –0,2, что в целом обычно превосходит реальные оценки J_{P0} (рис. 2), до 0 и уменьшением возвышения от $\Delta K_T \approx 0,3$ также до 0. Однако следует заметить, что у винтов высокого шагового отношения значения J_{P0} , соответствующие указанному максимуму, лежат гораздо ближе к $J_{P0} = 0$, чем у винтов малого шага, и могут даже совпадать со швартовыми.

На рис. За показаны типичные примеры кривых коэффициентов упора $K_T(J_P)$ изолированных винтов в режиме встречной струи. Кривая

Рис. 3. Вид прилегающих к швартовам коэффициентов упора винта на режиме встречной струи, дополняющий рис. 1 в увеличенном виде: *a*) варианты реверсивных кривых и построение точек коэффициента упора изолированного винта, соответствующих швартовным точкам кривых его действия при самоходных испытаниях; *б*) зоны влияния режима встречной струи на коэффициент упора винта при самоходных испытаниях

Fig. 3. Propeller thrust coefficients adjacent to bollard pull conditions at opposed slipstream. Complementary to Fig. 1 in enlarged view: *a*) versions of reversed jets and plotting the open-water thrust coefficient by points corresponding to points of propeller curves near bollard pull conditions at self-propelled tests; *b*) operating areas where opposed jets affect propeller thrust coefficients at self-propelled tests

варианта а отвечает винтам малого шага; вблизи швартовых располагается лишь восходящая ветвь $|J_P|$ реверсивной кривой, а ее максимум и нисходящая ветвь лежат при значительно бо́льших |*J*_P/. Кривая b примерно соответствует винту среднего шагового отношения; вблизи швартовых на ней можно увидеть все типичные элементы изменения коэффициента упора винта в режиме встречной струи. Поэтому именно она используется при последующем анализе. На ней отмечен максимум при поступи Ј_м. Наконец, вариант с возможен при большом шаге винта, когда максимум реверсивной кривой находится на швартовых, непосредственно откуда сразу начинается ее нисходящая ветвь, а восходящая - вообще отсутствует.

На рис. За также наглядно показан процесс определения точек коэффициента упора изолированного винта $K_T(J_{P0})$, соответствующих швартовным точкам $K_{TB\pm}(0)$, при самоходных испытаниях. Восстановив перпендикуляр из точки оси абсцисс при J_{P0} до его пересечения с уровнем соответствующего коэффициента упора $K_{TB\pm}(0)$, находим точку коэффициента упора $K_T(J_{P0})$ гребного винта в свободной воде, соответствующую $K_{TB}(0)$. Для наглядности приняты поступи $J_{P0} > J_{P0} > J_{P0+}$.

На рис. Зб показано значение J_S – ограничивающее область влияния режима встречной струи на кривые действия в диапазоне $K_{TB\pm}(0) \ge K_{TB\pm}(0) \ge K_{TB\pm}(J_s)$. Применительно к каждой из кривых $K_{TB\pm}(J)$ граница J_s имеет свое значение, но на схеме она условно показана единой. В каждом случае зоны влияния режима встречной струи имеют протяженность $|J_{P0}|$ и высоту $K_{TB\pm}(0) - K_{TB\pm}(J_s)$.

Из формулы (7) следует, что J_P – линейная функция кажущейся поступи J. Поэтому на рис. Зб из реверсивных точек $K_T(J_{P0})$, соответствующих $K_{TB\pm}(0)$, проведены наклонные прямые к швартовным точкам на уровне $K_{TB\pm}(J_s)$, которые являются нижними границами рассматриваемых зон. В диапазоне $0 < J < J_s$ эти прямые являются геометрическим местом точек для коэффициентов упора изолированного винта $K_T(J_P)$.

Для общности обозначим

$$J'_{P} = J_{P0} \frac{K_{BT\pm}(J) - K_{BT\pm}(J_{s})}{K_{BT\pm}(0) - K_{BT\pm}(J_{s})};$$

тогда при J = 0 получаем $J'_P = J_{P0}$, но $J'_P = 0$, когда $J = J_S$. Пересечение наклонных прямых (или их

продолжений) с реверсивной кривой примерно указывает на ее участки, «ответственные» за значения J'_P . На рис. Зб показаны и упомянутые наклонные прямые, и примеры соответствующих друг другу точек для винта в свободной воде и за корпусом.

Рассмотрим разные варианты взаимного расположения реверсивной кривой действия винта в свободной воде и поступей точек J'_{P0i} , где i = 1, 2, 3..., соответствующих $K_{TB\pm}(J)$ при $0 < J < J_s$. Для этих поступей различные комплексы «гребной винт – корпус» отличаются лишь величиной коэффициентов взаимодействия w_{μ}^* и t_0 .

Одной точке $K_{TB+}(0) > K_T(0)$ соответствуют два варианта поступей J'_{P01} и J'_{P02} . Но «ответственные» за них участки реверсивной кривой находятся на разных ее ветвях: при J'_{P01} – на восходящей, а при J'_{P02} – на нисходящей. При данном конкретном гребном винте, входящем в состав любого комплекса, наибольшее из ряда возможных возвышений $\Delta K_+ = K_{TB+}(0) - K_T(0)$ определяется максимумом реверсивной кривой, положению которого, как отмечалось, соответствует поступь J_M .

Варианты точек с абсциссами J'_{P03} и J'_{P04} лежат вблизи ниспадающей ветви реверсивной кривой. В отличие от $K_{TB+}(0)$ снижение $\Delta K_{-} < 0$ величины $K_{TB-}(0)$ относительно $K_{T}(0)$ теоретически может быть любым.

В зонах влияния режима встречной струи $(0 < J < J_s)$ на работу гребного винта комплекса определение коэффициента попутного потока следует производить с учетом этого влияния, принимая в расчет $J'_P < 0$ соответствующей точки на наклонной прямой:

$$w^{*}(J) = \frac{\Delta V}{nD} = J - J'_{P}.$$
 (20)

При $J > J_s$ поступь изолированного винта положительна ($J_p > 0$), и величина w(J) может рассчитываться по (3) и обычным способом.

Из всего рассмотренного следует, что причиной расхождения коэффициентов упора винта за корпусом того или иного комплекса является работа ГВ в свободной воде в режиме встречной струи с $J'_P < 0$ на прилегающем к швартовым участке. Совпадение же коэффициентов упора $K_{TB+}(J)$ и $K_{TB-}(J)$ с $K_{TB}(J)$ возможно лишь при нулевых значениях коэффициентов номинального попутного потока ($w_{\rm H}^*$) и засасывания на швартовых (t_0), чего, как правило, не бывает.

Рекомендации по уточнению методик испытаний самоходных моделей судов и винтов в свободной воде

Recommendations on updating the test procedures for propeller and self-propelled model tests

Результаты, приведенные в предыдущей главе, открывают возможность выполнения расчета гребных винтов общепринятым методом, применяя вблизи швартовных режимов $J'_P < 0$, а не только используя метод [3]. Они показывают, что вблизи швартовых пренебрежение влиянием режима встречной струи изолированного винта на попутный поток приводит к заниженным оценкам *w*. Заметим, что при $J'_P < 0$, учитывая знак этой поступи, для сохранения правильным знака *w* необходимо считать и J = -0 (хотя на швартовых $w(0) = \pm \infty$).

В случае, когда $K_{TB+}(0) > K_T(0)$, рассчитывать коэффициент попутного потока обычным способом по формуле (3) ранее было невозможно. Изложенное обеспечивает возможность определения поступи J'_P применительно к участку $0 < J \le J_+$ для точек кривой $K_{TB+}(J)$, положив $J_s > J_+$.

В точке пересечения Ј_ кривых действия винта в свободной воде и $K_{TB-}(J)$ поступи J_P и J должны совпадать друг с другом. Результаты опыта сами указывают значение границы $J_s = J_{-}$. Коэффициент попутного потока w^* в этом случае при $0 < J \leq J_{-}$ снижается от $w^*(0) = w_{\rm H}^* + t_0 \sqrt{\frac{K_{TB}(0)}{\pi/2}}$ до 0, а при $J > J_{-}$ вновь начинает возрастать.

При анализе взаимодействия винта и корпуса «коэффициент неоднородности» і_Q определяется из рассмотрения пропульсивного коэффициента комплекса: $i_Q = \frac{\eta_0 \eta_H}{\eta}$, где $\eta(J)$ – пропульсивный коэффициент комплекса, $\eta_0(J_P)$ – коэффициент полезного действия винта в свободной воде, а $\eta_H(J) = \frac{1-t(J)}{1-w(J)}$ – коэффициент влияния корпуса. При этом $i_T = 1$.

На швартовых коэффициент попутного потока по (3) обращается в $\pm \infty$ и, таким образом, теряет свою информативность. Причина этого неудобства обращение в 0 скорости хода судна V = 0, меняющей знак с + на – и используемой в качестве нормирующего элемента для размерного попутного потока V – V_P. Чтобы избежать этого, необходимо в качестве нормирующего элемента использовать иную характерную скорость, которая при переходе через J = 0 сохраняла бы конечное значение.

Одним из таких вариантов является использовавшаяся выше комбинация nD, не изменяющаяся на швартовых. Коэффициент попутного потока такого типа имеет вид

$$w^{*} = \frac{V - V_{P}}{nD} = J - J_{P} = Jw,$$
(21)

последняя часть которого показывает его связь с общепринятым коэффициентом. Такая форма коэффициента попутного потока везде конечна, кроме точек реверсивной характеристики винта, в которых изменяется направление его вращения, т.е. знака *n*.

Для полного исключения разрывов коэффициента попутного потока можно в качестве нормирующей принять обобщенную скорость $sign(V \cdot nD)\sqrt{V^2 + (nD)^2}$, где вводится функция sign, т.к. корень может иметь знак + или -. В этом случае коэффициент попутного потока принимает вид

$$w^{+} = \frac{V - V_{P}}{\operatorname{sign}(V \cdot nD)\sqrt{V^{2} + (nD)^{2}}} = \frac{Jw}{\operatorname{sign}(J) \cdot \sqrt{J^{2} + 1}}.$$
 (22)

Использование коэффициентов попутного потока согласно w^* или w^+ позволяет в процессе проектирования винта применять обычные методы расчета, а не только [3].

При испытаниях винтов в свободной воде, которые обычно предшествуют самоходным испытаниям модели судна, можно в некоторых случаях рекомендовать предусматривать обследование не только кривых действия на передний или задний ход, но и части режима встречной струи в пределах от швартовного режима до $|J_{P0}| > |w^{(0)}|$ (с некоторым запасом). Следует подчеркнуть, что на этом участке измеряемый упор крайне нестационарен, и для его надежного определения необходимо максимально увеличить время измерения, что представляется несложным, т.к. поступательные скорости невелики.

Заключение

Conclusion

1. Подтверждено, что коэффициенты упоров на швартовых при испытаниях самоходных моделей судов $K_{TB\pm}(0)$, как правило, отклоняются в ту или другую сторону от коэффициента упора винта в свободной воде на швартовых $K_T(0)$ с последующим изменением всей кривой.

При самоходных испытаниях вблизи швартовых гребной винт работает в режиме встречной струи – одного из участков его реверса. На основе анализа взаимодействия идеального движителя с судном показано, что в этих условиях скорость ΔV внешнего потока, натекающего на винт, работающий в присутствии корпуса, конечна и отрицательна, т.е. направлена навстречу скорости хода судна. Она характеризуется коэффициентом эффективного попутного пото-

ка $w^* = \frac{\Delta V}{nD} = w_{\rm H}^* + t_0 \sqrt{\frac{K_{TB}(0)}{\pi/2}}$, вторая часть ко-

торого (Δw^*) вызывается воздействием на винт системы стоков, обеспечивающих прилегание течения к корпусу.

- 3. Зона влияния реверсивного режима обтекания гребного винта распространяется от швартовых до коэффициента упора K_{TB±}(J_s) < K_{TB±}(0). Получено соотношение для определения предельной кажущейся поступи J_s, которое при линейной аппроксимации кривой коэффициента упора винта приближенно представляет собой алгебраическое уравнение третьей степени. Рассмотрены возможности его аналитического решения, а также применение численного итерационного метода.
- 4. Показано, что в соответствии с гипотезой эквивалентности обтекание лопастей изолированного гребного винта и в случае его работы за корпусом, при определении коэффициента попутного потока вблизи швартовых, в зоне $0 \le J \le J_s$, поступь винта в свободной воде J'_P , соответствующую J, необходимо принимать с учетом влияния реверсивных характеристик коэффициента упора винта на режиме встречной струи.
- Даны рекомендации по корректировке методики испытаний самоходных судов и винтов в свободной воде.

Список использованной литературы

 Справочник по теории корабля : в 3 т. Т. 1. Гидромеханика. Сопротивление движению судов. Судовые движители / [Я.И. Войткунский и др.]. Ленинград : Судостроение, 1985. 764 с.

- 2. *Басин А.М., Миниович И.Я.* Теория и расчет гребных винтов. Ленинград : Судпромгиз, 1963. 760 с.
- Каневский Г.И., Клубничкин А.М., Щербаков И.В. Швартовая система коэффициентов взаимодействия гребных винтов с корпусом // Труды ЦНИИ им. акад. А.Н. Крылова. 2011. Вып. 59(343). С. 77–88.
- Котлович В.М. К вопросу о квазиреверсивных испытаниях судовых движителей в опытовом бассейне // Труды Крыловского государственного научного центра. 2019. Вып. 3(389). С. 37–48. DOI: 10.24937/ 2542-2324-2019-3-389-37-48.
- 5. Бронштейн И.Н., Семендяев К.А. Справочник по математике для инженеров и учащихся втузов: учеб. пособие. Санкт Петербург : Лань, 2010. 608 с.

References

- Handbook of ship theory: in 3 volumes. Vol. 1: Hydromechanics. Ship resistance. Ship propulsors / [*Ya. Voitkunsky* et al.]. Leningrad : Sudostroenie, 1985. 764 p. (*in Russian*).
- 2. *Basin A.M., Miniovich I.Ya.* Theory and design of propellers. Leningrad : Sudpromgiz, 1963. 760 p. (*in Russian*).
- Kanevsky G.I., Klubnichkin A.M., Shcherbakov I.V. System of bollard pull interaction coefficients between propellers and hull // Transactions of the Krylov Central Research Institute. 2011. Vol. 59(343). P. 77–88 (*in Russian*).
- Kotlovich V.M. On quasi-reversal tests of ship propellers in test tank // Transactions of the Krylov State Research Centre. 2019. Vol. 3(389). P. 37–48. DOI: 10.24937/ 2542-2324-2019-3-389-37-48 (in Russian).
- 5. Bronshtein I.N., Semendiaev K.A. Handbook on mathematics for engineers and students of technological institutes: teaching aid. St. Petersburg : Lan, 2010. 608 p. (*in Russian*).

Сведения об авторе

Котлович Валерий Михайлович, к.т.н., старший научный сотрудник ФГУП «Крыловский государственный научный центр. Адрес: 196158, Россия, Санкт-Петербург, Московское шоссе, д. 44. Тел.: +7 (812) 377-25-17. Е-mail: valya1937@yandex.ru.

About the author

Valery M. Kotlovich, Cand. Sci. (Eng.), Senior Researcher, Krylov State Research Centre. Address: 44, Moskovskoe sh., St. Petersburg, Russia, post code 196158. Tel.: +7 (812) 377-25-17. E-mail: valya1937@yandex.ru.

> Поступила / Received: 05.04.23 Принята в печать / Ассерted: 06.06.23 © Котлович В.М., 2023